BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16080170)

  • 1. An in vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats.
    Marques AP; Reis RL; Hunt JA
    Macromol Biosci; 2005 Aug; 5(8):775-85. PubMed ID: 16080170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro assessment of the enzymatic degradation of several starch based biomaterials.
    Azevedo HS; Gama FM; Reis RL
    Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption.
    Alves CM; Yang Y; Carnes DL; Ong JL; Sylvia VL; Dean DD; Agrawal CM; Reis RL
    Biomaterials; 2007 Jan; 28(2):307-15. PubMed ID: 17011619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative immunohistochemical examination of the local cellular reactions following implantation of biomaterials.
    Walschus U; Hoene A; Kochanowski A; Neukirch B; Patrzyk M; Wilhelm L; Schröder K; Schlosser M
    J Microsc; 2011 Apr; 242(1):94-9. PubMed ID: 21118237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biocompatibility of novel starch-based polymers and composites: in vitro studies.
    Marques AP; Reis RL; Hunt JA
    Biomaterials; 2002 Mar; 23(6):1471-8. PubMed ID: 11829443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo short-term and long-term host reaction to starch-based scaffolds.
    Santos TC; Marques AP; Höring B; Martins AR; Tuzlakoglu K; Castro AG; van Griensven M; Reis RL
    Acta Biomater; 2010 Nov; 6(11):4314-26. PubMed ID: 20601228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo response to starch-based scaffolds designed for bone tissue engineering applications.
    Salgado AJ; Coutinho OP; Reis RL; Davies JE
    J Biomed Mater Res A; 2007 Mar; 80(4):983-9. PubMed ID: 17109411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microhardness of starch based biomaterials in simulated physiological conditions.
    Alves NM; Saiz-Arroyo C; Rodriguez-Perez MA; Reis RL; Mano JF
    Acta Biomater; 2007 Jan; 3(1):69-76. PubMed ID: 16996331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.
    Vaisman B; Motiei M; Nyska A; Domb AJ
    J Biomed Mater Res A; 2010 Feb; 92(2):419-31. PubMed ID: 19191319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells.
    Marques AP; Cruz HR; Coutinho OP; Reis RL
    J Mater Sci Mater Med; 2005 Sep; 16(9):833-42. PubMed ID: 16167112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone.
    Daniels AU; Chang MK; Andriano KP
    J Appl Biomater; 1990; 1(1):57-78. PubMed ID: 10148987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan improves the biological performance of soy-based biomaterials.
    Santos TC; Marques AP; Silva SS; Oliveira JM; Mano JF; Castro AG; van Griensven M; Reis RL
    Tissue Eng Part A; 2010 Sep; 16(9):2883-90. PubMed ID: 20486796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface structural investigation of starch-based biomaterials.
    Pashkuleva I; Azevedo HS; Reis RL
    Macromol Biosci; 2008 Feb; 8(2):210-9. PubMed ID: 17849430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo biocompatibility of bacterial cellulose.
    Helenius G; Bäckdahl H; Bodin A; Nannmark U; Gatenholm P; Risberg B
    J Biomed Mater Res A; 2006 Feb; 76(2):431-8. PubMed ID: 16278860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue reaction and biodegradation of implanted cross-linked high amylose starch in rats.
    Désévaux C; Dubreuil P; Lenaerts V; Girard C
    J Biomed Mater Res; 2002; 63(6):772-9. PubMed ID: 12418023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro.
    Marques AP; Reis RL; Hunt JA
    J Mater Sci Mater Med; 2005 Nov; 16(11):1029-43. PubMed ID: 16388384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo induction of macrophage Ia antigen (MHC class II) expression by biomedical polymers in the cage implant system.
    Petillo O; Peluso G; Ambrosio L; Nicolais L; Kao WJ; Anderson JM
    J Biomed Mater Res; 1994 May; 28(5):635-46. PubMed ID: 8027104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility of different poly(lactide-coglycolide) polymers implanted into the subconjunctival space in rats.
    Rönkkö S; Kaarniranta K; Kalesnykas G; Uusitalo H
    Ophthalmic Res; 2011; 46(2):55-65. PubMed ID: 21228610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced foreign body reaction to implanted biomaterials by surface treatment with oriented osteopontin.
    Liu L; Chen G; Chao T; Ratner BD; Sage EH; Jiang S
    J Biomater Sci Polym Ed; 2008; 19(6):821-35. PubMed ID: 18534099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline treatments to render starch-based biodegradable polymers self-mineralizable.
    Leonor IB; Kim HM; Balas F; Kawashita M; Reis RL; Kokubo T; Nakamura T
    J Tissue Eng Regen Med; 2007; 1(6):425-35. PubMed ID: 18181243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.