BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16080269)

  • 1. Fluorescence recovery after photobleaching: application to nuclear proteins.
    Houtsmuller AB
    Adv Biochem Eng Biotechnol; 2005; 95():177-99. PubMed ID: 16080269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells.
    van Royen ME; Farla P; Mattern KA; Geverts B; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 464():363-85. PubMed ID: 18951195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP.
    Bancaud A; Huet S; Rabut G; Ellenberg J
    Cold Spring Harb Protoc; 2010 Dec; 2010(12):pdb.top90. PubMed ID: 21123431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleocytoplasmic shuttling revealed by FRAP and FLIP technologies.
    Köster M; Frahm T; Hauser H
    Curr Opin Biotechnol; 2005 Feb; 16(1):28-34. PubMed ID: 15722012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin as a model for the study of nucleocytoplasmic shuttling and nuclear dynamics.
    Skarp KP; Vartiainen MK
    Methods Mol Biol; 2013; 1042():245-55. PubMed ID: 23980013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring dynamics of nuclear proteins by photobleaching.
    Dundr M; Misteli T
    Curr Protoc Cell Biol; 2003 May; Chapter 13():Unit 13.5. PubMed ID: 18228420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular diffusion and binding analyzed with FRAP.
    Wachsmuth M
    Protoplasma; 2014 Mar; 251(2):373-82. PubMed ID: 24390250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Parameters which affect the estimation of protein mobility by method FRAP in living cells on the example of protein fibrillarin].
    Barygina VV; Mironova AA; Zatsepina OV
    Tsitologiia; 2012; 54(1):17-24. PubMed ID: 22567896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRAP and FRET methods to study nuclear receptors in living cells.
    van Royen ME; Dinant C; Farla P; Trapman J; Houtsmuller AB
    Methods Mol Biol; 2009; 505():69-96. PubMed ID: 19117140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).
    Giakoumakis NN; Rapsomaniki MA; Lygerou Z
    Methods Mol Biol; 2017; 1563():243-267. PubMed ID: 28324613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution.
    Mudumbi KC; Schirmer EC; Yang W
    Nat Commun; 2016 Aug; 7():12562. PubMed ID: 27558844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent applications of fluorescence recovery after photobleaching (FRAP) to membrane bio-macromolecules.
    Rayan G; Guet JE; Taulier N; Pincet F; Urbach W
    Sensors (Basel); 2010; 10(6):5927-48. PubMed ID: 22219695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference of protein kinetics by stochastic modeling and simulation of fluorescence recovery after photobleaching experiments.
    Rapsomaniki MA; Cinquemani E; Giakoumakis NN; Kotsantis P; Lygeros J; Lygerou Z
    Bioinformatics; 2015 Feb; 31(3):355-62. PubMed ID: 25273108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel in situ assay for the identification and characterization of soluble nuclear mobility factors.
    Elbi C; Walker DA; Lewis M; Romero G; Sullivan WP; Toft DO; Hager GL; DeFranco DB
    Sci STKE; 2004 Jun; 2004(238):pl10. PubMed ID: 15213337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins.
    Carrero G; McDonald D; Crawford E; de Vries G; Hendzel MJ
    Methods; 2003 Jan; 29(1):14-28. PubMed ID: 12543068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes.
    Kang M; Day CA; Drake K; Kenworthy AK; DiBenedetto E
    Biophys J; 2009 Sep; 97(5):1501-11. PubMed ID: 19720039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular dynamics in living cell nuclei revealed by fluorescence redistribution after photobleaching.
    Houtsmuller AB; Vermeulen W
    Histochem Cell Biol; 2001 Jan; 115(1):13-21. PubMed ID: 11219603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of Kinetic Models by a Combination of Microirradiation and Fluorescence Photobleaching.
    Lengert L; Lengert N; Drossel B; Cardoso MC; Muster B; Nowak D; Rapp A
    Biophys J; 2015 Oct; 109(8):1551-64. PubMed ID: 26488646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy.
    De Los Santos C; Chang CW; Mycek MA; Cardullo RA
    Mol Reprod Dev; 2015; 82(7-8):587-604. PubMed ID: 26010322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.
    Sarkar M; Koland JG
    Methods Mol Biol; 2016; 1376():97-105. PubMed ID: 26552678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.