These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16080687)

  • 1. Phenol degradation and toxicity assessment upon biostimulation to an indigenous Rhizobium Ralstonia taiwanensis.
    Chen BY; Chang JS
    Biotechnol Prog; 2005; 21(4):1085-92. PubMed ID: 16080687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal biostimulation strategy for phenol degradation with indigenous rhizobium Ralstonia taiwanensis.
    Chen BY; Chen WM; Chang JS
    J Hazard Mater; 2007 Jan; 139(2):232-7. PubMed ID: 16844294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity assessment upon augmented biostimulation source to indigenous rhizobium Cupriavidus taiwanensis.
    Chen BY; Lin CY; Hsu SY
    J Hazard Mater; 2009 Apr; 163(1):143-51. PubMed ID: 18684558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of phenol and trichloroethene degradation by the rhizobium Ralstonia taiwanensis.
    Chen WM; Chang JS; Wu CH; Chang SC
    Res Microbiol; 2004 Oct; 155(8):672-80. PubMed ID: 15380556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal exponential feeding strategy for dual-substrate biostimulation of phenol degradation using Cupriavidus taiwanensis.
    Chen BY; You JW; Chang JS
    J Hazard Mater; 2009 Aug; 168(1):507-14. PubMed ID: 19285800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Feb; 151(1):171-8. PubMed ID: 17618738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotoxicity assessment on reusability of municipal solid waste incinerator (MSWI) ash.
    Chen BY; Lin KL
    J Hazard Mater; 2006 Aug; 136(3):741-6. PubMed ID: 16490305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region.
    Wei G; Yu J; Zhu Y; Chen W; Wang L
    J Hazard Mater; 2008 Feb; 151(1):111-7. PubMed ID: 17624668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of aerobic utilization of di-ortho-substituted trichlorobiphenyls as growth substrates by Pseudomonas sp. SA-6 and Ralstonia sp. SA-4.
    Adebusoye SA; Picardal FW; Ilori MO; Amund OO
    Environ Microbiol; 2008 May; 10(5):1165-74. PubMed ID: 18248454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of growth and multi substrate degradation by an indigenous mixed microbial culture isolated from a wastewater treatment plant in Guwahati, India.
    Saravanan P; Pakshirajan K; Saha PK
    Water Sci Technol; 2008; 58(5):1101-6. PubMed ID: 18824810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicities of triclosan, phenol, and copper sulfate in activated sludge.
    Neumegen RA; Fernández-Alba AR; Chisti Y
    Environ Toxicol; 2005 Apr; 20(2):160-4. PubMed ID: 15793824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents.
    Dos Santos VL; Monteiro Ade S; Braga DT; Santoro MM
    J Hazard Mater; 2009 Jan; 161(2-3):1413-20. PubMed ID: 18541369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor.
    Saravanan P; Pakshirajan K; Saha P
    Bioresour Technol; 2008 Jan; 99(1):205-9. PubMed ID: 17236761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of phenol at low temperature using two-phase partitioning bioreactors.
    Guieysse B; Autem Y; Soares A
    Water Sci Technol; 2005; 52(10-11):97-105. PubMed ID: 16459781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria.
    McKew BA; Coulon F; Yakimov MM; Denaro R; Genovese M; Smith CJ; Osborn AM; Timmis KN; McGenity TJ
    Environ Microbiol; 2007 Jun; 9(6):1562-71. PubMed ID: 17504493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor.
    Tepe O; Dursun AY
    J Hazard Mater; 2008 Feb; 151(1):9-16. PubMed ID: 17611023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol degradation by Fusarium oxysporum GJ4 is affected by toxic catalytic polymerization mediated by copper oxide.
    Park JY; Hong JW; Gadd GM
    Chemosphere; 2009 May; 75(6):765-71. PubMed ID: 19211129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute toxicity evaluation of proliferol: a dose-escalating, placebo-controlled study in swine.
    Dagenais S; Wooley J; Hite M; Green R; Mayer J
    Int J Toxicol; 2009; 28(3):219-29. PubMed ID: 19546260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strengths and limitations of using repeat-dose toxicity studies to predict effects on fertility.
    Dent MP
    Regul Toxicol Pharmacol; 2007 Aug; 48(3):241-58. PubMed ID: 17512650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.