These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16080709)

  • 21. An integrated experimental-computational approach for the study of engineered cartilage constructs subjected to combined regimens of hydrostatic pressure and interstitial perfusion.
    Moretti M; Freed LE; Padera RF; Laganà K; Boschetti F; Raimondi MT
    Biomed Mater Eng; 2008; 18(4-5):273-8. PubMed ID: 19065033
    [No Abstract]   [Full Text] [Related]  

  • 22. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of depth-dependent properties in tissue-engineered cartilage with a semi-permeable membrane and perfusion: a continuum model of matrix metabolism and transport.
    Klein TJ; Sah RL
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):21-32. PubMed ID: 16715317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of oxygen tension and pH in a bioreactor for cartilage tissue engineering.
    Das R; Kreukniet M; Oostra J; van Osch G; Weinans H; Jahr H
    Biomed Mater Eng; 2008; 18(4-5):279-82. PubMed ID: 19065034
    [No Abstract]   [Full Text] [Related]  

  • 25. Cellulose-based scaffold materials for cartilage tissue engineering.
    Müller FA; Müller L; Hofmann I; Greil P; Wenzel MM; Staudenmaier R
    Biomaterials; 2006 Jul; 27(21):3955-63. PubMed ID: 16530823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs.
    Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A
    Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of oxygen gradients in engineered tissue using a fluorescent sensor.
    Kellner K; Liebsch G; Klimant I; Wolfbeis OS; Blunk T; Schulz MB; Göpferich A
    Biotechnol Bioeng; 2002 Oct; 80(1):73-83. PubMed ID: 12209788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid cellular automaton modeling of nutrient modulated cell growth in tissue engineering constructs.
    Chung CA; Lin TH; Chen SD; Huang HI
    J Theor Biol; 2010 Jan; 262(2):267-78. PubMed ID: 19808041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage.
    Kang SW; Yoo SP; Kim BS
    Biomed Mater Eng; 2007; 17(5):269-76. PubMed ID: 17851169
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage.
    Kino-Oka M; Maeda Y; Yamamoto T; Sugawara K; Taya M
    J Biosci Bioeng; 2005 Mar; 99(3):197-207. PubMed ID: 16233778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering.
    Bilgen B; Sucosky P; Neitzel GP; Barabino GA
    Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cultivation of three-dimensional cartilage-carrier-constructs under reduced oxygen tension.
    Nagel-Heyer S; Goepfert C; Adamietz P; Meenen NM; Pörtner R
    J Biotechnol; 2006 Feb; 121(4):486-97. PubMed ID: 16181697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human periosteum-derived cells from elderly patients as a source for cartilage tissue engineering?
    Jansen EJ; Emans PJ; Guldemond NA; van Rhijn LW; Welting TJ; Bulstra SK; Kuijer R
    J Tissue Eng Regen Med; 2008 Aug; 2(6):331-9. PubMed ID: 18615820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nutrient utilization by bovine articular chondrocytes: a combined experimental and theoretical approach.
    Sengers BG; Heywood HK; Lee DA; Oomens CW; Bader DL
    J Biomech Eng; 2005 Oct; 127(5):758-66. PubMed ID: 16248305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytokine-rich autologous serum system for cartilaginous tissue engineering.
    Isogai N; Nakagawa Y; Suzuki K; Yamada R; Asamura S; Hayakawa S; Munakata H
    Ann Plast Surg; 2008 Jun; 60(6):703-9. PubMed ID: 18520211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of cell growth and diffusion in a scaffold for cartilage tissue engineering.
    Chung CA; Yang CW; Chen CW
    Biotechnol Bioeng; 2006 Aug; 94(6):1138-46. PubMed ID: 16586509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical analysis of engineered cartilage oxygenation: influence of construct thickness and media flow rate.
    Pierre J; Gemmiti CV; Kolambkar YM; Oddou C; Guldberg RE
    Biomech Model Mechanobiol; 2008 Dec; 7(6):497-510. PubMed ID: 17999099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rate of oxygen consumption by isolated articular chondrocytes is sensitive to medium glucose concentration.
    Heywood HK; Bader DL; Lee DA
    J Cell Physiol; 2006 Feb; 206(2):402-10. PubMed ID: 16155906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human serum for tissue engineering of human nasal septal cartilage.
    Alexander TH; Sage AB; Schumacher BL; Sah RL; Watson D
    Otolaryngol Head Neck Surg; 2006 Sep; 135(3):397-403. PubMed ID: 16949971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of perfusion on metabolism and matrix production by bovine articular chondrocytes in hydrogel scaffolds.
    Xu X; Urban JP; Tirlapur U; Wu MH; Cui Z; Cui Z
    Biotechnol Bioeng; 2006 Apr; 93(6):1103-11. PubMed ID: 16470872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.