BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 16080998)

  • 1. Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain.
    Fritzsch B; Pauley S; Matei V; Katz DM; Xiang M; Tessarollo L
    Hear Res; 2005 Aug; 206(1-2):52-63. PubMed ID: 16080998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention.
    Fritzsch B; Matei VA; Nichols DH; Bermingham N; Jones K; Beisel KW; Wang VY
    Dev Dyn; 2005 Jun; 233(2):570-83. PubMed ID: 15844198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance.
    Fritzsch B; Tessarollo L; Coppola E; Reichardt LF
    Prog Brain Res; 2004; 146():265-78. PubMed ID: 14699969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation.
    Xiang M; Maklad A; Pirvola U; Fritzsch B
    BMC Neurosci; 2003 Jan; 4():2. PubMed ID: 12585968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation.
    Ma Q; Anderson DJ; Fritzsch B
    J Assoc Res Otolaryngol; 2000 Sep; 1(2):129-43. PubMed ID: 11545141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A disorganized innervation of the inner ear persists in the absence of ErbB2.
    Morris JK; Maklad A; Hansen LA; Feng F; Sorensen C; Lee KF; Macklin WB; Fritzsch B
    Brain Res; 2006 May; 1091(1):186-99. PubMed ID: 16630588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications.
    Fritzsch B; Pirvola U; Ylikoski J
    Cell Tissue Res; 1999 Mar; 295(3):369-82. PubMed ID: 10022958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation.
    Fritzsch B; Silos-Santiago I; Bianchi LM; Farinas I
    Semin Cell Dev Biol; 1997; 8():277-84. PubMed ID: 11542690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementary roles of BDNF and NT-3 in vestibular and auditory development.
    Ernfors P; Van De Water T; Loring J; Jaenisch R
    Neuron; 1995 Jun; 14(6):1153-64. PubMed ID: 7605630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of BDNF and neurotrophic receptors in human inner ear development.
    Johnson Chacko L; Blumer MJF; Pechriggl E; Rask-Andersen H; Dietl W; Haim A; Fritsch H; Glueckert R; Dudas J; Schrott-Fischer A
    Cell Tissue Res; 2017 Dec; 370(3):347-363. PubMed ID: 28924861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combined effects of trkB and trkC mutations on the innervation of the inner ear.
    Fritzsch B; Barbacid M; Silos-Santiago I
    Int J Dev Neurosci; 1998 Oct; 16(6):493-505. PubMed ID: 9881298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of neurotrophic factors in regulating the development of inner ear innervation.
    Fritzsch B; Silos-Santiago I; Bianchi LM; FariƱas I
    Trends Neurosci; 1997 Apr; 20(4):159-64. PubMed ID: 9106356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea.
    Tessarollo L; Coppola V; Fritzsch B
    J Neurosci; 2004 Mar; 24(10):2575-84. PubMed ID: 15014133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti.
    Yang T; Kersigo J; Jahan I; Pan N; Fritzsch B
    Hear Res; 2011 Aug; 278(1-2):21-33. PubMed ID: 21414397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ear transplantations reveal conservation of inner ear afferent pathfinding cues.
    Elliott KL; Fritzsch B
    Sci Rep; 2018 Sep; 8(1):13819. PubMed ID: 30218045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia.
    Fritzsch B
    Brain Res Bull; 2003 Jun; 60(5-6):423-33. PubMed ID: 12787865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disorganized innervation and neuronal loss in the inner ear of Slitrk6-deficient mice.
    Katayama K; Zine A; Ota M; Matsumoto Y; Inoue T; Fritzsch B; Aruga J
    PLoS One; 2009 Nov; 4(11):e7786. PubMed ID: 19936227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Differentiation, protection and regeneration of hair cells and auditory neurons in mammals].
    Malgrange B
    Bull Mem Acad R Med Belg; 2005; 160(5-6):276-86. PubMed ID: 16465782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties.
    Gordy C; Straka H; Houston DW; Fritzsch B; Elliott KL
    Dev Neurobiol; 2018 Nov; 78(11):1064-1080. PubMed ID: 30027559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hair-cell regeneration in organ cultures of the postnatal chicken inner ear.
    Oesterle EC; Tsue TT; Reh TA; Rubel EW
    Hear Res; 1993 Oct; 70(1):85-108. PubMed ID: 8276735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.