BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 16081010)

  • 21. Neural organization and responses to complex stimuli in the dorsal cochlear nucleus.
    Young ED; Spirou GA; Rice JJ; Voigt HF
    Philos Trans R Soc Lond B Biol Sci; 1992 Jun; 336(1278):407-13. PubMed ID: 1354382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alleviation of Tinnitus With High-Frequency Stimulation of the Dorsal Cochlear Nucleus: A Rodent Study.
    van Zwieten G; Jahanshahi A; van Erp ML; Temel Y; Stokroos RJ; Janssen MLF; Smit JV
    Trends Hear; 2019; 23():2331216519835080. PubMed ID: 30868944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathways involved in somatosensory electrical modulation of dorsal cochlear nucleus activity.
    Zhang J; Guan Z
    Brain Res; 2007 Dec; 1184():121-31. PubMed ID: 17964553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus.
    Ma WL; Hidaka H; May BJ
    Hear Res; 2006 Feb; 212(1-2):9-21. PubMed ID: 16307852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blast-Induced tinnitus and spontaneous firing changes in the rat dorsal cochlear nucleus.
    Luo H; Pace E; Zhang X; Zhang J
    J Neurosci Res; 2014 Nov; 92(11):1466-77. PubMed ID: 24938852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decreasing dorsal cochlear nucleus activity ameliorates noise-induced tinnitus perception in mice.
    Malfatti T; Ciralli B; Hilscher MM; Leao RN; Leao KE
    BMC Biol; 2022 May; 20(1):102. PubMed ID: 35550106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus.
    Kaltenbach JA; Afman CE
    Hear Res; 2000 Feb; 140(1-2):165-72. PubMed ID: 10675644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic over-exposure triggers burst firing in dorsal cochlear nucleus fusiform cells.
    Pilati N; Large C; Forsythe ID; Hamann M
    Hear Res; 2012 Jan; 283(1-2):98-106. PubMed ID: 22085487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuronal nitric oxide synthase expression in the cochlear nucleus in a salicylate model of tinnitus.
    Zheng Y; Seung Lee H; Smith PF; Darlington CL
    Brain Res; 2006 Dec; 1123(1):201-6. PubMed ID: 17056016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single neuron recordings in dorsal cochlear nucleus (DCN) of awake gerbil.
    Navawongse R; Voigt HF
    Hear Res; 2009 Sep; 255(1-2):44-57. PubMed ID: 19450672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure.
    Kaltenbach JA; Zacharek MA; Zhang J; Frederick S
    Neurosci Lett; 2004 Jan; 355(1-2):121-5. PubMed ID: 14729250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between the vestibular nucleus and the dorsal cochlear nucleus: implications for tinnitus.
    Smith PF
    Hear Res; 2012 Oct; 292(1-2):80-2. PubMed ID: 22960359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of early and late treatment with L-baclofen on the development and maintenance of tinnitus caused by acoustic trauma in rats.
    Zheng Y; McPherson K; Smith PF
    Neuroscience; 2014 Jan; 258():410-21. PubMed ID: 24291770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cochlear ablation in adult ferrets results in changes in insulin-like growth factor-1 and synaptophysin immunostaining in the cochlear nucleus.
    Fuentes-SantamarĂ­a V; Alvarado JC; Henkel CK; Brunso-Bechtold JK
    Neuroscience; 2007 Sep; 148(4):1033-47. PubMed ID: 17764853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity.
    Baizer JS; Manohar S; Paolone NA; Weinstock N; Salvi RJ
    Brain Res; 2012 Nov; 1485():40-53. PubMed ID: 22513100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system.
    Plant K; Holden L; Skinner M; Arcaroli J; Whitford L; Law MA; Nel E
    Ear Hear; 2007 Jun; 28(3):381-93. PubMed ID: 17485987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms contributing to central excitability changes during hearing loss.
    Pilati N; Ison MJ; Barker M; Mulheran M; Large CH; Forsythe ID; Matthias J; Hamann M
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8292-7. PubMed ID: 22566618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differentially expressed genes in the rat cochlear nucleus.
    Friedland DR; Popper P; Eernisse R; Cioffi JA
    Neuroscience; 2006 Oct; 142(3):753-68. PubMed ID: 16905270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.
    Basura GJ; Koehler SD; Shore SE
    J Neurophysiol; 2015 Dec; 114(6):3064-75. PubMed ID: 26289461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence of activity-dependent plasticity in the dorsal cochlear nucleus, in vivo, induced by brief sound exposure.
    Gao Y; Manzoor N; Kaltenbach JA
    Hear Res; 2016 Nov; 341():31-42. PubMed ID: 27490001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.