BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 16081131)

  • 1. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea).
    Choo TP; Lee CK; Low KS; Hishamuddin O
    Chemosphere; 2006 Feb; 62(6):961-7. PubMed ID: 16081131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and distribution of trivalent chromium and effects on hybrid willow (Salix matsudana Koidz x alba L.) metabolism.
    Yu XZ; Gu JD
    Arch Environ Contam Toxicol; 2007 May; 52(4):503-11. PubMed ID: 17380236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation.
    Weerasinghe A; Ariyawnasa S; Weerasooriya R
    Chemosphere; 2008 Jan; 70(3):521-4. PubMed ID: 17720213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of Penicillium chrysogenum PTCC 5037 in reducing low concentration of chromium hexavalent in a chromium electroplating plant wastewater.
    Pazouki M; Keyanpour-Rad M; Shafie Sh; Shahhoseini Sh
    Bioresour Technol; 2007 Aug; 98(11):2116-22. PubMed ID: 17035005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes).
    Mishra VK; Tripathi BD
    J Hazard Mater; 2009 May; 164(2-3):1059-63. PubMed ID: 18938031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of trace chromium (VI) from contaminated water: bio-sorption by Ipomea aquatica.
    Bhat SC; Goswami S; Ghosh UC
    J Environ Sci Eng; 2005 Oct; 47(4):316-21. PubMed ID: 17051919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pilot-scale removal of chromium from industrial wastewater using the ChromeBac system.
    Ahmad WA; Zakaria ZA; Khasim AR; Alias MA; Ismail SM
    Bioresour Technol; 2010 Jun; 101(12):4371-8. PubMed ID: 20185301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
    Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K
    J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity and bioaccumulation potential of Cr (VI) and Hg (II) on differential concentration by Eichhornia crassipes in hydroponic culture.
    Giri AK; Patel RK
    Water Sci Technol; 2011; 63(5):899-907. PubMed ID: 21411939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland.
    Mauricio Gutiérrez A; Peña Cabriales JJ; Maldonado Vega M
    Int J Phytoremediation; 2010; 12(4):317-34. PubMed ID: 20734910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper.
    Monferrán MV; Pignata ML; Wunderlin DA
    Environ Pollut; 2012 Feb; 161():15-22. PubMed ID: 22230062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extractive removal of chromium (VI) from industrial waste solution.
    Agrawal A; Pal C; Sahu KK
    J Hazard Mater; 2008 Nov; 159(2-3):458-64. PubMed ID: 18417285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz).
    Yu XZ; Gu JD
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):216-22. PubMed ID: 18192014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium removal from electroplating wastewater by coir pith.
    Suksabye P; Thiravetyan P; Nakbanpote W; Chayabutra S
    J Hazard Mater; 2007 Mar; 141(3):637-44. PubMed ID: 16919872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction remediation of hexavalent chromium by bacterial flora in Cr(VI) aqueous solution.
    Wang Q; Xu X; Zhao F; Liu Z; Xu J
    Water Sci Technol; 2010; 61(11):2889-96. PubMed ID: 20489262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater.
    Zakaria ZA; Zakaria Z; Surif S; Ahmad WA
    J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species.
    Murphy V; Hughes H; McLoughlin P
    J Hazard Mater; 2009 Jul; 166(1):318-26. PubMed ID: 19121898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of chromium from industrial waste by using eucalyptus bark.
    Sarin V; Pant KK
    Bioresour Technol; 2006 Jan; 97(1):15-20. PubMed ID: 16154498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.