BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16081214)

  • 21. Spectroscopy of the shear force interaction in scanning near-field optical microscopy.
    Hoppe S; Ctistis G; Paggel JJ; Fumagalli P
    Ultramicroscopy; 2005 Feb; 102(3):221-6. PubMed ID: 15639353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Ultrastructure research on lung small cell carcinoma].
    Liang CH
    Zhonghua Jie He He Hu Xi Za Zhi; 1987 Feb; 10(1):8-9, 61. PubMed ID: 3040354
    [No Abstract]   [Full Text] [Related]  

  • 23. Feedback-independent Pt nanoelectrodes for shear force-based constant-distance mode scanning electrochemical microscopy.
    Etienne M; Anderson EC; Evans SR; Schuhmann W; Fritsch I
    Anal Chem; 2006 Oct; 78(20):7317-24. PubMed ID: 17037938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method for performing scanning electron microscopy of colonies growing in a human tumor cloning system.
    Harris GJ; Zeagler J; Von Hoff DD
    Int J Cell Cloning; 1985 Sep; 3(5):286-93. PubMed ID: 4045256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Method of preparation of the material obtained by fine-needle aspiration biopsy for examination by scanning electron microscopy].
    Domagała W; Kotańska K
    Patol Pol; 1982; 33(3-4):201-4. PubMed ID: 6298693
    [No Abstract]   [Full Text] [Related]  

  • 26. Optical force field mapping in microdevices.
    Knöner G; Ratnapala A; Nieminen TA; Vale CJ; Heckenberg NR; Rubinsztein-Dunlop H
    Lab Chip; 2006 Dec; 6(12):1545-7. PubMed ID: 17203159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cantilevered bimorph-based scanner for high speed atomic force microscopy with large scanning range.
    Zhou Y; Shang G; Cai W; Yao JE
    Rev Sci Instrum; 2010 May; 81(5):053708. PubMed ID: 20515146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can scanning near-field optical microscopy be compared with confocal laser scanning microscopy? A preliminary study on alpha-sarcoglycan and beta1D-integrin in human skeletal muscle.
    Anastasi G; Cutroneo G; Pisani A; Bruschetta D; Milardi D; Princi P; Gucciardi PG; Bramanti P; Soscia L; Favaloro A
    J Microsc; 2007 Dec; 228(Pt 3):322-9. PubMed ID: 18045326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes.
    Lai K; Ji MB; Leindecker N; Kelly MA; Shen ZX
    Rev Sci Instrum; 2007 Jun; 78(6):063702. PubMed ID: 17614611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fluorescence scanning electron microscope.
    Kanemaru T; Hirata K; Takasu S; Isobe S; Mizuki K; Mataka S; Nakamura K
    Ultramicroscopy; 2009 Mar; 109(4):344-9. PubMed ID: 19211187
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multidrug resistance in small cell lung cancer: expression of P-glycoprotein, multidrug resistance protein 1 and lung resistance protein in chemo-naive patients and in relapsed disease.
    Triller N; Korosec P; Kern I; Kosnik M; Debeljak A
    Lung Cancer; 2006 Nov; 54(2):235-40. PubMed ID: 16934363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards correlative imaging of plant cortical microtubule arrays: combining ultrastructure with real-time microtubule dynamics.
    Barton DA; Gardiner JC; Overall RL
    J Microsc; 2009 Sep; 235(3):241-51. PubMed ID: 19754719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements.
    Pan X; Foo W; Lim W; Fok MH; Liu P; Yu H; Maruyama I; Wohland T
    Rev Sci Instrum; 2007 May; 78(5):053711. PubMed ID: 17552829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shear force control for a terahertz near field microscope.
    Buersgens F; Acuna G; Lang CH; Potrebic SI; Manus S; Kersting R
    Rev Sci Instrum; 2007 Nov; 78(11):113701. PubMed ID: 18052474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shear force microscopy with a nanoscale resolution.
    Ndobo-Epoy JP; Lesniewska E; Guicquero JP
    Ultramicroscopy; 2005 Jun; 103(3):229-36. PubMed ID: 15850710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of living cells grown on different titanium surfaces by time-lapse confocal microscopy.
    Gatti R; Orlandini G; Uggeri J; Belletti S; Galli C; Raspanti M; Scandroglio R; Guizzardi S
    Micron; 2008; 39(2):137-43. PubMed ID: 17223563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intensity correction of fluorescent confocal laser scanning microscope images by mean-weight filtering.
    Lee SC; Bajcsy P
    J Microsc; 2006 Feb; 221(Pt 2):122-36. PubMed ID: 16499551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High second harmonic generation signal from muscles and fascia pig's muscles using the two-photon laser scanning microscope.
    Reshak AH
    J Microsc; 2009 Jun; 234(3):280-6. PubMed ID: 19493106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.