BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 16081240)

  • 1. Hydrophilic polymers--biocompatibility testing in vitro.
    Kejlová K; Labský J; Jírová D; Bendová H
    Toxicol In Vitro; 2005 Oct; 19(7):957-62. PubMed ID: 16081240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototoxicity of bituminous tars-correspondence between results of 3T3 NRU PT, 3D skin model and experimental human data.
    Jirová D; Kejlová K; Bendová H; Ditrichová D; Mezulániková M
    Toxicol In Vitro; 2005 Oct; 19(7):931-4. PubMed ID: 16061351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of biocompatibility and cytotoxicity using keratinocyte and fibroblast cultures.
    Wiegand C; Hipler UC
    Skin Pharmacol Physiol; 2009; 22(2):74-82. PubMed ID: 19188755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity and biocompatibility evaluation of a poly(magnesium acrylate) hydrogel synthesized for drug delivery.
    Cheddadi M; López-Cabarcos E; Slowing K; Barcia E; Fernández-Carballido A
    Int J Pharm; 2011 Jul; 413(1-2):126-33. PubMed ID: 21536112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cultures in the biocompatibility study of synthetic materials.
    Cascone MG; Tricoli M; Cerrai P; Sbarbati Del Guerra R
    Cytotechnology; 1993; 11 Suppl 1():S137-9. PubMed ID: 7763743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro biocompatibility studies of antibacterial quaternary polymers.
    Stratton TR; Rickus JL; Youngblood JP
    Biomacromolecules; 2009 Sep; 10(9):2550-5. PubMed ID: 19708685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of hydrogel polymers as contact lenses, surface coatings, dressings, and drug delivery systems.
    Wheeler JC; Woods JA; Cox MJ; Cantrell RW; Watkins FH; Edlich RF
    J Long Term Eff Med Implants; 1996; 6(3-4):207-17. PubMed ID: 10167362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of dextrin-based hydrogels: rheology, biocompatibility, and degradation.
    Carvalho J; Moreira S; Maia J; Gama FM
    J Biomed Mater Res A; 2010 Apr; 93(1):389-99. PubMed ID: 19569221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymers with tunable toxicity: a reference scale for cytotoxicity testing of biomaterial surfaces.
    Knetsch ML; Olthof N; Koole LH
    J Biomed Mater Res A; 2007 Sep; 82(4):947-57. PubMed ID: 17335027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility testing of polymers: in vivo implantation studies.
    Gourlay SJ; Rice RM; Hegyeli AF; Wade CW; Dillon JG; Jaffe H; Kulkarni RK
    J Biomed Mater Res; 1978 Mar; 12(2):219-32. PubMed ID: 649628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amended final report on the safety assessment of glyceryl dilaurate, glyceryl diarachidate, glyceryl dibehenate, glyceryl dierucate, glyceryl dihydroxystearate, glyceryl diisopalmitate, glyceryl diisostearate, glyceryl dilinoleate, glyceryl dimyristate, glyceryl dioleate, glyceryl diricinoleate, glyceryl dipalmitate, glyceryl dipalmitoleate, glyceryl distearate, glyceryl palmitate lactate, glyceryl stearate citrate, glyceryl stearate lactate, and glyceryl stearate succinate.
    Int J Toxicol; 2007; 26 Suppl 3():1-30. PubMed ID: 18273450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility of HEMA copolymers designed for treatment of CNS diseases with polymer-encapsulated cells.
    Mokrý J; Karbanová J; Lukás J; Palecková V; Dvoránková B
    Biotechnol Prog; 2000; 16(5):897-904. PubMed ID: 11027187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro biocompatibility of various polymer-based microelectrode arrays for retinal prosthesis.
    Bae SH; Che JH; Seo JM; Jeong J; Kim ET; Lee SW; Koo KI; Suaning GJ; Lovell NH; Cho DI; Kim SJ; Chung H
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2653-7. PubMed ID: 22427592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatibility testing of branched and linear polyglycidol.
    Kainthan RK; Janzen J; Levin E; Devine DV; Brooks DE
    Biomacromolecules; 2006 Mar; 7(3):703-9. PubMed ID: 16529404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatibility study of polymeric biomaterials.
    Rogero SO; Malmonge SM; Lugão AB; Ikeda TI; Miyamaru L; Cruz AS
    Artif Organs; 2003 May; 27(5):424-7. PubMed ID: 12752201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility of polypyrrole particles: an in-vivo study in mice.
    Ramanaviciene A; Kausaite A; Tautkus S; Ramanavicius A
    J Pharm Pharmacol; 2007 Feb; 59(2):311-5. PubMed ID: 17270084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ultrastructural study of the biocompatibility of poly(2-hydroxyethyl methacrylate) in bone.
    Murray DG; Dow JS
    J Biomed Mater Res; 1975 Nov; 9(6):699-707. PubMed ID: 1184615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biocompatibility of various surgical drainage materials in the cytotoxicity and implantation test].
    Martin J; Nowak W; Thiel KD; Wutzler P; Kraft U
    Z Exp Chir Transplant Kunstliche Organe; 1990; 23(4):205-8. PubMed ID: 2095645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: synthesis and characterization.
    La Gatta A; Schiraldi C; Esposito A; D'Agostino A; De Rosa A
    J Biomed Mater Res A; 2009 Jul; 90(1):292-302. PubMed ID: 18508339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.