These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 16081478)

  • 1. Metachronal propagation of motoneurone burst activation in isolated spinal cord of newborn rat.
    Cazalets JR
    J Physiol; 2005 Oct; 568(Pt 2):583-97. PubMed ID: 16081478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurosci; 1996 Nov; 16(21):7063-76. PubMed ID: 8824342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous rhythmic bursts induced by pharmacological block of inhibition in lumbar motoneurons of the neonatal rat spinal cord.
    Bracci E; Ballerini L; Nistri A
    J Neurophysiol; 1996 Feb; 75(2):640-7. PubMed ID: 8714641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord.
    Beato M; Nistri A
    J Neurophysiol; 1999 Nov; 82(5):2029-38. PubMed ID: 10561384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1997 Mar; 77(3):1155-70. PubMed ID: 9084588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitatory actions of ventral root stimulation during network activity generated by the disinhibited neonatal mouse spinal cord.
    Bonnot A; Chub N; Pujala A; O'Donovan MJ
    J Neurophysiol; 2009 Jun; 101(6):2995-3011. PubMed ID: 19321640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and modeling studies of novel bursts induced by blocking na(+) pump and synaptic inhibition in the rat spinal cord.
    Rozzo A; Ballerini L; Abbate G; Nistri A
    J Neurophysiol; 2002 Aug; 88(2):676-91. PubMed ID: 12163521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interneurone bursts are spontaneously associated with muscle contractions only during early phases of mouse spinal network development: a study in organotypic cultures.
    Rosato-Siri MD; Zoccolan D; Furlan F; Ballerini L
    Eur J Neurosci; 2004 Nov; 20(10):2697-710. PubMed ID: 15548213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons.
    Schneider SP; Fyffe RE
    J Neurophysiol; 1992 Aug; 68(2):397-406. PubMed ID: 1326603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABAA and glycine receptors in regulation of intercostal and abdominal expiratory activity in vitro in neonatal rat.
    Iizuka M
    J Physiol; 2003 Sep; 551(Pt 2):617-33. PubMed ID: 12909685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures.
    Tscherter A; Heuschkel MO; Renaud P; Streit J
    Eur J Neurosci; 2001 Jul; 14(2):179-90. PubMed ID: 11553271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The generation of rhythmic activity in dissociated cultures of rat spinal cord.
    Streit J; Tscherter A; Heuschkel MO; Renaud P
    Eur J Neurosci; 2001 Jul; 14(2):191-202. PubMed ID: 11553272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA-receptor-independent dorsal root afferents depolarization in the neonatal rat spinal cord.
    Kremer E; Lev-Tov A
    J Neurophysiol; 1998 May; 79(5):2581-92. PubMed ID: 9582230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat.
    Falgairolle M; Cazalets JR
    J Physiol; 2007 Apr; 580(Pt 1):87-102. PubMed ID: 17185345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propriospinal neurons contribute to bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord.
    Zaporozhets E; Cowley KC; Schmidt BJ
    J Physiol; 2006 Apr; 572(Pt 2):443-58. PubMed ID: 16469789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological block of the electrogenic sodium pump disrupts rhythmic bursting induced by strychnine and bicuculline in the neonatal rat spinal cord.
    Ballerini L; Bracci E; Nistri A
    J Neurophysiol; 1997 Jan; 77(1):17-23. PubMed ID: 9120558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemisegmental localisation of rhythmic networks in the lumbosacral spinal cord of neonate mouse.
    Bonnot A; Morin D
    Brain Res; 1998 May; 793(1-2):136-48. PubMed ID: 9630574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A₁ adenosine receptor modulation of chemically and electrically evoked lumbar locomotor network activity in isolated newborn rat spinal cords.
    Taccola G; Olivieri D; D'Angelo G; Blackburn P; Secchia L; Ballanyi K
    Neuroscience; 2012 Oct; 222():191-204. PubMed ID: 22824428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.