BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 16081510)

  • 21. Differential requirement for DNA methyltransferase 1 in maintaining human cancer cell gene promoter hypermethylation.
    Ting AH; Jair KW; Schuebel KE; Baylin SB
    Cancer Res; 2006 Jan; 66(2):729-35. PubMed ID: 16424002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promoter methylation of O(6)-methylguanine-DNA-methyltransferase in lung cancer is regulated by p53.
    Lai JC; Cheng YW; Goan YG; Chang JT; Wu TC; Chen CY; Lee H
    DNA Repair (Amst); 2008 Aug; 7(8):1352-63. PubMed ID: 18555750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of chlorogenic acid and its metabolites on the sleep-wakefulness cycle in rats.
    Shinomiya K; Omichi J; Ohnishi R; Ito H; Yoshida T; Kamei C
    Eur J Pharmacol; 2004 Nov; 504(3):185-9. PubMed ID: 15541420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of inhibition of rice bran lipase by polyphenols: a case study with chlorogenic acid and caffeic acid.
    Raghavendra MP; Kumar PR; Prakash V
    J Food Sci; 2007 Oct; 72(8):E412-9. PubMed ID: 17995599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of two new variants of human catechol O-methyltransferase in vitro.
    Li Y; Yang X; van Breemen RB; Bolton JL
    Cancer Lett; 2005 Dec; 230(1):81-9. PubMed ID: 16253764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of pre-existing methylation on the de novo activity of eukaryotic DNA methyltransferase.
    Carotti D; Funiciello S; Palitti F; Strom R
    Biochemistry; 1998 Jan; 37(4):1101-8. PubMed ID: 9454602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): a comparative study.
    Oboh G; Agunloye OM; Adefegha SA; Akinyemi AJ; Ademiluyi AO
    J Basic Clin Physiol Pharmacol; 2015 Mar; 26(2):165-70. PubMed ID: 24825096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catechol estrogen 4-hydroxyequilenin is a substrate and an inhibitor of catechol-O-methyltransferase.
    Yao J; Li Y; Chang M; Wu H; Yang X; Goodman JE; Liu X; Liu H; Mesecar AD; Van Breemen RB; Yager JD; Bolton JL
    Chem Res Toxicol; 2003 May; 16(5):668-75. PubMed ID: 12755597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription.
    Zhang Y; Fatima N; Dufau ML
    Mol Cell Biol; 2005 Sep; 25(18):7929-39. PubMed ID: 16135786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy.
    Stalmach A; Steiling H; Williamson G; Crozier A
    Arch Biochem Biophys; 2010 Sep; 501(1):98-105. PubMed ID: 20226754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catechol metabolites of polychlorinated biphenyls inhibit the catechol-O-methyltransferase-mediated metabolism of catechol estrogens.
    Garner CE; Burka LT; Etheridge AE; Matthews HB
    Toxicol Appl Pharmacol; 2000 Jan; 162(2):115-23. PubMed ID: 10637135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins.
    Gugliucci A; Bastos DH; Schulze J; Souza MF
    Fitoterapia; 2009 Sep; 80(6):339-44. PubMed ID: 19409454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorogenic acid in coffee can prevent the formation of dinitrogen trioxide by scavenging nitrogen dioxide generated in the human oral cavity.
    Takahama U; Ryu K; Hirota S
    J Agric Food Chem; 2007 Oct; 55(22):9251-8. PubMed ID: 17924708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Medical hypothesis: hyperhomocysteinemia is a risk factor for estrogen-induced hormonal cancer.
    Zhu BT
    Int J Oncol; 2003 Mar; 22(3):499-508. PubMed ID: 12579301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D).
    Tsou MF; Hung CF; Lu HF; Wu LT; Chang SH; Chang HL; Chen GW; Chung JG
    Microbios; 2000; 101(398):37-46. PubMed ID: 10677842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrophilic ester-bearing chlorogenic acid binds to a novel domain to inhibit xanthine oxidase.
    Wang SH; Chen CS; Huang SH; Yu SH; Lai ZY; Huang ST; Lin CM
    Planta Med; 2009 Sep; 75(11):1237-40. PubMed ID: 19330765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of catechol-O-methyltransferase (COMT) gene polymorphism on promoter methylation status in gastric mucosa.
    Tahara T; Shibata T; Arisawa T; Nakamura M; Yamashita H; Yoshioka D; Okubo M; Maruyama N; Kamano T; Kamiya Y; Fujita H; Nagasaka M; Iwata M; Takahama K; Watanabe M; Hirata I
    Anticancer Res; 2009 Jul; 29(7):2857-61. PubMed ID: 19596974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells.
    Cho CY; Wang JH; Chang HC; Chang CK; Hung WC
    J Cell Physiol; 2007 Oct; 213(1):65-9. PubMed ID: 17443689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1.
    Valinluck V; Sowers LC
    Cancer Res; 2007 Feb; 67(3):946-50. PubMed ID: 17283125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo CpG island methylation in human cancer cells.
    Jair KW; Bachman KE; Suzuki H; Ting AH; Rhee I; Yen RW; Baylin SB; Schuebel KE
    Cancer Res; 2006 Jan; 66(2):682-92. PubMed ID: 16423997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.