These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 16081606)

  • 21. A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering.
    Ramamurti R; Sandberg WC
    J Exp Biol; 2007 Mar; 210(Pt 5):881-96. PubMed ID: 17297147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of flexibility on the aerodynamic performance of a hovering wing.
    Vanella M; Fitzgerald T; Preidikman S; Balaras E; Balachandran B
    J Exp Biol; 2009 Jan; 212(Pt 1):95-105. PubMed ID: 19088215
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clap-and-fling mechanism in a hovering insect-like two-winged flapping-wing micro air vehicle.
    Phan HV; Au TK; Park HC
    R Soc Open Sci; 2016 Dec; 3(12):160746. PubMed ID: 28083112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing.
    Ishihara D; Yamashita Y; Horie T; Yoshida S; Niho T
    J Exp Biol; 2009 Dec; 212(Pt 23):3882-91. PubMed ID: 19915131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The aerodynamics of free-flight maneuvers in Drosophila.
    Fry SN; Sayaman R; Dickinson MH
    Science; 2003 Apr; 300(5618):495-8. PubMed ID: 12702878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wing kinematics measurement and aerodynamics of hovering droneflies.
    Liu Y; Sun M
    J Exp Biol; 2008 Jul; 211(Pt 13):2014-25. PubMed ID: 18552290
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bristles reduce the force required to 'fling' wings apart in the smallest insects.
    Jones SK; Yun YJ; Hedrick TL; Griffith BE; Miller LA
    J Exp Biol; 2016 Dec; 219(Pt 23):3759-3772. PubMed ID: 27903629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leading-edge vortex lifts swifts.
    Videler JJ; Stamhuis EJ; Povel GD
    Science; 2004 Dec; 306(5703):1960-2. PubMed ID: 15591209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing.
    Lu Y; Shen GX
    J Exp Biol; 2008 Apr; 211(Pt 8):1221-30. PubMed ID: 18375846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A linear systems analysis of the yaw dynamics of a dynamically scaled insect model.
    Dickson WB; Polidoro P; Tanner MM; Dickinson MH
    J Exp Biol; 2010 Sep; 213(Pt 17):3047-61. PubMed ID: 20709933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerodynamics of wing-assisted incline running in birds.
    Tobalske BW; Dial KP
    J Exp Biol; 2007 May; 210(Pt 10):1742-51. PubMed ID: 17488937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of clap-and-fling mechanism on force generation in flapping wing micro aerial vehicles.
    Jadhav SS; Lua KB; Tay WB
    Bioinspir Biomim; 2019 Feb; 14(3):036006. PubMed ID: 30721890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight.
    Birch JM; Dickinson MH
    J Exp Biol; 2003 Jul; 206(Pt 13):2257-72. PubMed ID: 12771174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aerodynamic effects of corrugation in flapping insect wings in hovering flight.
    Meng XG; Xu L; Sun M
    J Exp Biol; 2011 Feb; 214(Pt 3):432-44. PubMed ID: 21228202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
    Phillips N; Knowles K; Bomphrey RJ
    Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. When vortices stick: an aerodynamic transition in tiny insect flight.
    Miller LA; Peskin CS
    J Exp Biol; 2004 Aug; 207(Pt 17):3073-88. PubMed ID: 15277562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spanwise flow and the attachment of the leading-edge vortex on insect wings.
    Birch JM; Dickinson MH
    Nature; 2001 Aug; 412(6848):729-33. PubMed ID: 11507639
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On aerodynamic modelling of an insect-like flapping wing in hover for micro air vehicles.
    Zbikowski R
    Philos Trans A Math Phys Eng Sci; 2002 Feb; 360(1791):273-90. PubMed ID: 16210181
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.