BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16081654)

  • 1. Redesigning symmetry-related "mini-core" regions of FGF-1 to increase primary structure symmetry: thermodynamic and functional consequences of structural symmetry.
    Dubey VK; Lee J; Blaber M
    Protein Sci; 2005 Sep; 14(9):2315-23. PubMed ID: 16081654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetric primary and tertiary structure mutations within a symmetric superfold: a solution, not a constraint, to achieve a foldable polypeptide.
    Brych SR; Dubey VK; Bienkiewicz E; Lee J; Logan TM; Blaber M
    J Mol Biol; 2004 Nov; 344(3):769-80. PubMed ID: 15533444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of type I 4:6 to 3:5 beta-turn types in human acidic fibroblast growth factor: effects upon structure, stability, folding, and mitogenic function.
    Lee J; Dubey VK; Somasundaram T; Blaber M
    Proteins; 2006 Mar; 62(3):686-97. PubMed ID: 16355415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accommodation of a highly symmetric core within a symmetric protein superfold.
    Brych SR; Kim J; Logan TM; Blaber M
    Protein Sci; 2003 Dec; 12(12):2704-18. PubMed ID: 14627732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polypeptide "building block" for the β-trefoil fold identified by "top-down symmetric deconstruction".
    Lee J; Blaber SI; Dubey VK; Blaber M
    J Mol Biol; 2011 Apr; 407(5):744-63. PubMed ID: 21315087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and stability effects of mutations designed to increase the primary sequence symmetry within the core region of a beta-trefoil.
    Brych SR; Blaber SI; Logan TM; Blaber M
    Protein Sci; 2001 Dec; 10(12):2587-99. PubMed ID: 11714927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary structure of ovine fibroblast growth factor-1 deduced by protein and cDNA analysis.
    Grieb TW; Ring M; Brown E; Palmer C; Belle N; Donjerkovic D; Chang H; Yun J; Subramanian R; Forozan F; Guo Y; Vertes A; Winkles JA; Burgess WH
    Biochem Biophys Res Commun; 1998 May; 246(1):182-91. PubMed ID: 9600090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a highly stable mutant of human fibroblast growth factor 1.
    Szlachcic A; Zakrzewska M; Krowarsch D; Os V; Helland R; Smalås AO; Otlewski J
    Acta Crystallogr D Biol Crystallogr; 2009 Jan; 65(Pt 1):67-73. PubMed ID: 19153468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic characterization of mutants of human fibroblast growth factor 1 with an increased physiological half-life.
    Culajay JF; Blaber SI; Khurana A; Blaber M
    Biochemistry; 2000 Jun; 39(24):7153-8. PubMed ID: 10852713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a Cysteine-Free Form of Human Fibroblast Growth Factor-1 for "Second Generation" Therapeutic Application.
    Xia X; Kumru OS; Blaber SI; Middaugh CR; Li L; Ornitz DM; Sutherland MA; Tenorio CA; Blaber M
    J Pharm Sci; 2016 Apr; 105(4):1444-53. PubMed ID: 27019961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spackling the crack: stabilizing human fibroblast growth factor-1 by targeting the N and C terminus beta-strand interactions.
    Dubey VK; Lee J; Somasundaram T; Blaber S; Blaber M
    J Mol Biol; 2007 Aug; 371(1):256-68. PubMed ID: 17570396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Designing out" disulfide bonds: thermodynamic properties of 30-51 cystine substitution mutants of bovine pancreatic trypsin inhibitor.
    Liu Y; Breslauer K; Anderson S
    Biochemistry; 1997 May; 36(18):5323-35. PubMed ID: 9154914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability.
    Hodges RS; Zhou NE; Kay CM; Semchuk PD
    Pept Res; 1990; 3(3):123-37. PubMed ID: 2134057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction between thermodynamic stability and buried free cysteines in regulating the functional half-life of fibroblast growth factor-1.
    Lee J; Blaber M
    J Mol Biol; 2009 Oct; 393(1):113-27. PubMed ID: 19695265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of conserved cysteine in the fibroblast growth factor family: evidence for a vestigial half-cystine.
    Lee J; Blaber M
    J Mol Biol; 2009 Oct; 393(1):128-39. PubMed ID: 19683004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of fully active FGF-1 variants with increased stability.
    Zakrzewska M; Krowarsch D; Wiedlocha A; Otlewski J
    Protein Eng Des Sel; 2004 Aug; 17(8):603-11. PubMed ID: 15469994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the thermostability of Hydrogenobacter thermophilus cytochrome c(552) through introduction of an extra methylene group into its hydrophobic protein interior.
    Tai H; Irie K; Mikami S; Yamamoto Y
    Biochemistry; 2011 Apr; 50(15):3161-9. PubMed ID: 21417336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stable mutants of human fibroblast growth factor-1 exhibit prolonged biological action.
    Zakrzewska M; Krowarsch D; Wiedlocha A; Olsnes S; Otlewski J
    J Mol Biol; 2005 Sep; 352(4):860-75. PubMed ID: 16126225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring sequence/folding space: folding studies on multiple hydrophobic core mutants of ubiquitin.
    Benítez-Cardoza CG; Stott K; Hirshberg M; Went HM; Woolfson DN; Jackson SE
    Biochemistry; 2004 May; 43(18):5195-203. PubMed ID: 15122885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.