These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 16081874)

  • 1. The shape of the electrical action-potential upstroke: a new aspect from optical measurements on the surface of the heart.
    Kléber AG
    Circ Res; 2005 Aug; 97(3):204-6. PubMed ID: 16081874
    [No Abstract]   [Full Text] [Related]  

  • 2. Optical action potential upstroke morphology reveals near-surface transmural propagation direction.
    Hyatt CJ; Mironov SF; Vetter FJ; Zemlin CW; Pertsov AM
    Circ Res; 2005 Aug; 97(3):277-84. PubMed ID: 15994436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramural measurement of transmembrane potential in the isolated pig heart: validation of a novel technique.
    Caldwell BJ; Legrice IJ; Hooks DA; Tai DC; Pullan AJ; Smaill BH
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):1001-10. PubMed ID: 16174023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crosstalk between theoretical and experimental studies for the understanding of cardiac electrical impulse propagation.
    Kléber AG
    J Electrocardiol; 2007; 40(6 Suppl):S136-41. PubMed ID: 17993310
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of the cut surface during electrical stimulation of a cardiac wedge preparation.
    Roth BJ; Patel SG; Murdick RA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1187-90. PubMed ID: 16761846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of depth-weighted optical signals during cardiac optical mapping: a simulation study.
    Xu Z; Zhang Z; Jin Y; Wang J
    Comput Biol Med; 2007 May; 37(5):732-8. PubMed ID: 16987506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-photon excitation of di-4-ANEPPS for optical recording of action potentials in rabbit heart.
    Dumas JH; Knisley SB
    Ann Biomed Eng; 2005 Dec; 33(12):1802-7. PubMed ID: 16389528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Electrical activity of the heart].
    Nitenberg A
    Soins Cardiol; 1983 Nov; (9):17-23. PubMed ID: 6558867
    [No Abstract]   [Full Text] [Related]  

  • 9. Shock-induced transmembrane potential fields in a model of cardiac microstructure.
    Trew M; Sands GB
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):1024. PubMed ID: 16174028
    [No Abstract]   [Full Text] [Related]  

  • 10. Exploring reentrant arrhythmias with numerical experiments: generic properties and model complexity.
    Starmer CF
    J Cardiovasc Electrophysiol; 2009 Jun; 20(6):685-8. PubMed ID: 19220566
    [No Abstract]   [Full Text] [Related]  

  • 11. Cell-to-cell electrical interactions during early and late repolarization.
    Spitzer KW; Pollard AE; Yang L; Zaniboni M; Cordeiro JM; Huelsing DJ
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S8-S14. PubMed ID: 16686687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow Ca2+ channels neither contribute to upstroke of action potential nor to pacemaker potential in spontaneously active freshly isolated three day embryonic chick ventricle.
    Prakash P; Tripathi O
    Indian J Physiol Pharmacol; 2006; 50(2):121-32. PubMed ID: 17051731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous and discontinuous propagation in heart muscle.
    de Bakker JM; van Rijen HM
    J Cardiovasc Electrophysiol; 2006 May; 17(5):567-73. PubMed ID: 16684038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proceedings: 205. Electrical longitudinal dissociation of the His bundle.
    Sano T; Sawanobori T; Kamiyama A
    Nihon Seirigaku Zasshi; 1973; 35(8):468-9. PubMed ID: 4799392
    [No Abstract]   [Full Text] [Related]  

  • 15. Epicardial and endocardial dispersion of ventricular repolarization. A study of monophasic action potential mapping in healthy pigs.
    Kongstad O; Xia Y; Liang Y; Hertervig E; Ljungström E; Olsson B; Yuan S
    Scand Cardiovasc J; 2005 Dec; 39(6):342-7. PubMed ID: 16352486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of microscopic tissue structure in shock-induced activation assessed by optical mapping in myocyte cultures.
    Cheek ER; Sharifov OF; Fast VG
    J Cardiovasc Electrophysiol; 2005 Sep; 16(9):991-1000. PubMed ID: 16174022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrotonic cell-cell interactions in cardiac tissue: effects on action potential propagation and repolarization.
    Rudy Y
    Ann N Y Acad Sci; 2005 Jun; 1047():308-13. PubMed ID: 16093506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.
    Babbs CF
    Cardiovasc Eng; 2009 Jun; 9(2):59-71. PubMed ID: 19543975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Letter: Study of electrical interactions of spontaneously active cells based on the Noble model. Cells differing in anionic conductivity].
    Berkinblit MB; Kalinin DI; Kovalev SA; Chaĭlakhian LM
    Biofizika; 1974; 19(4):771-3. PubMed ID: 4425705
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.