These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 16082162)

  • 1. Amphipathic alpha-helix mediates the heterodimerization of soluble guanylyl cyclase.
    Shiga T; Suzuki N
    Zoolog Sci; 2005 Jul; 22(7):735-42. PubMed ID: 16082162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimerization region of soluble guanylate cyclase characterized by bimolecular fluorescence complementation in vivo.
    Rothkegel C; Schmidt PM; Atkins DJ; Hoffmann LS; Schmidt HH; Schröder H; Stasch JP
    Mol Pharmacol; 2007 Nov; 72(5):1181-90. PubMed ID: 17715400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the signaling helix coiled-coil domain of the beta1 subunit of the soluble guanylyl cyclase.
    Ma X; Beuve A; van den Akker F
    BMC Struct Biol; 2010 Jan; 10():2. PubMed ID: 20105301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimerization of nitric oxide-sensitive guanylyl cyclase requires the alpha 1 N terminus.
    Wagner C; Russwurm M; Jäger R; Friebe A; Koesling D
    J Biol Chem; 2005 May; 280(18):17687-93. PubMed ID: 15749699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the catalytic domain of human soluble guanylate cyclase.
    Allerston CK; von Delft F; Gileadi O
    PLoS One; 2013; 8(3):e57644. PubMed ID: 23505436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspartate 102 in the heme domain of soluble guanylyl cyclase has a key role in NO activation.
    Baskaran P; Heckler EJ; van den Akker F; Beuve A
    Biochemistry; 2011 May; 50(20):4291-7. PubMed ID: 21491881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of residues in the heme domain of soluble guanylyl cyclase that are important for basal and stimulated catalytic activity.
    Baskaran P; Heckler EJ; van den Akker F; Beuve A
    PLoS One; 2011; 6(11):e26976. PubMed ID: 22096512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptor-controlled phosphorylation of alpha 1 soluble guanylyl cyclase enhances nitric oxide-dependent cyclic guanosine 5'-monophosphate production in pituitary cells.
    Kostic TS; Andric SA; Stojilkovic SS
    Mol Endocrinol; 2004 Feb; 18(2):458-70. PubMed ID: 14630997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional domains of soluble guanylyl cyclase.
    Wedel B; Harteneck C; Foerster J; Friebe A; Schultz G; Koesling D
    J Biol Chem; 1995 Oct; 270(42):24871-5. PubMed ID: 7559610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of sequences mediating guanylyl cyclase dimerization.
    Wilson EM; Chinkers M
    Biochemistry; 1995 Apr; 34(14):4696-701. PubMed ID: 7718574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functional domain of the alpha1 subunit of soluble guanylyl cyclase is necessary for activation of the enzyme by nitric oxide and YC-1 but is not involved in heme binding.
    Koglin M; Behrends S
    J Biol Chem; 2003 Apr; 278(14):12590-7. PubMed ID: 12560334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase.
    Khalid RR; Maryam A; Sezerman OU; Mylonas E; Siddiqi AR; Kokkinidis M
    Sci Rep; 2020 Jun; 10(1):9488. PubMed ID: 32528025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between the 90-kDa heat shock protein and soluble guanylyl cyclase: physiological significance and mapping of the domains mediating binding.
    Papapetropoulos A; Zhou Z; Gerassimou C; Yetik G; Venema RC; Roussos C; Sessa WC; Catravas JD
    Mol Pharmacol; 2005 Oct; 68(4):1133-41. PubMed ID: 16024662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial residues promote an optimal alignment of the catalytic center in human soluble guanylate cyclase: heterodimerization is required but not sufficient for activity.
    Seeger F; Quintyn R; Tanimoto A; Williams GJ; Tainer JA; Wysocki VH; Garcin ED
    Biochemistry; 2014 Apr; 53(13):2153-65. PubMed ID: 24669844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and characterization of the catalytic domains of soluble guanylate cyclase: interaction with the heme domain.
    Winger JA; Marletta MA
    Biochemistry; 2005 Mar; 44(10):4083-90. PubMed ID: 15751985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct fusion of subunits of heterodimeric nitric oxide sensitive guanylyl cyclase leads to functional enzymes with preserved biochemical properties: evidence for isoform specific activation by ciguates.
    Haase N; Haase T; Kraehling JR; Behrends S
    Biochem Pharmacol; 2010 Dec; 80(11):1676-83. PubMed ID: 20797390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide-induced conformational changes in soluble guanylate cyclase.
    Underbakke ES; Iavarone AT; Chalmers MJ; Pascal BD; Novick S; Griffin PR; Marletta MA
    Structure; 2014 Apr; 22(4):602-11. PubMed ID: 24560804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new type soluble guanylyl cyclase, which contains a kinase-like domain: its structure and expression.
    Kojima M; Hisaki K; Matsuo H; Kangawa K
    Biochem Biophys Res Commun; 1995 Dec; 217(3):993-1000. PubMed ID: 8554626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional characterization of the dimerization region of soluble guanylyl cyclase.
    Zhou Z; Gross S; Roussos C; Meurer S; Müller-Esterl W; Papapetropoulos A
    J Biol Chem; 2004 Jun; 279(24):24935-43. PubMed ID: 15037620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent fusion proteins of soluble guanylyl cyclase indicate proximity of the heme nitric oxide domain and catalytic domain.
    Haase T; Haase N; Kraehling JR; Behrends S
    PLoS One; 2010 Jul; 5(7):e11617. PubMed ID: 20657650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.