BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16082206)

  • 1. Functional diversity in the gene network controlled by the master regulator p53 in humans.
    Resnick MA; Tomso D; Inga A; Menendez D; Bell D
    Cell Cycle; 2005 Aug; 4(8):1026-9. PubMed ID: 16082206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional evolution of the p53 regulatory network through its target response elements.
    Jegga AG; Inga A; Menendez D; Aronow BJ; Resnick MA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(3):944-9. PubMed ID: 18187580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation.
    Tomso DJ; Inga A; Menendez D; Pittman GS; Campbell MR; Storici F; Bell DA; Resnick MA
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6431-6. PubMed ID: 15843459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing the p53 master regulatory network: ELEMENTary, my dear Mr Watson.
    Menendez D; Inga A; Jordan JJ; Resnick MA
    Oncogene; 2007 Apr; 26(15):2191-201. PubMed ID: 17401428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity.
    Resnick MA; Inga A
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9934-9. PubMed ID: 12909720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human single-nucleotide polymorphisms alter p53 sequence-specific binding at gene regulatory elements.
    Bandele OJ; Wang X; Campbell MR; Pittman GS; Bell DA
    Nucleic Acids Res; 2011 Jan; 39(1):178-89. PubMed ID: 20817676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the functional impact of sequence variation on p53-DNA interactions using a novel microsphere assay for protein-DNA binding with human cell extracts.
    Noureddine MA; Menendez D; Campbell MR; Bandele OJ; Horvath MM; Wang X; Pittman GS; Chorley BN; Resnick MA; Bell DA
    PLoS Genet; 2009 May; 5(5):e1000462. PubMed ID: 19424414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.
    Horvath MM; Wang X; Resnick MA; Bell DA
    PLoS Genet; 2007 Jul; 3(7):e127. PubMed ID: 17677004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expanding universe of p53 targets.
    Menendez D; Inga A; Resnick MA
    Nat Rev Cancer; 2009 Oct; 9(10):724-37. PubMed ID: 19776742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Toll-like receptor gene family is integrated into human DNA damage and p53 networks.
    Menendez D; Shatz M; Azzam K; Garantziotis S; Fessler MB; Resnick MA
    PLoS Genet; 2011 Mar; 7(3):e1001360. PubMed ID: 21483755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay.
    Lion M; Raimondi I; Donati S; Jousson O; Ciribilli Y; Inga A
    PLoS One; 2015; 10(2):e0116177. PubMed ID: 25668429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico analysis of p53 using the p53 knowledgebase: mutations, polymorphisms, microRNAs and pathways.
    Yang Y; Tantoso E; Chua GH; Yeo ZX; Ng FS; Wong ST; Chung CW; Li KB
    In Silico Biol; 2007; 7(1):61-75. PubMed ID: 17688428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network.
    Menendez D; Krysiak O; Inga A; Krysiak B; Resnick MA; Schönfelder G
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1406-11. PubMed ID: 16432214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single-nucleotide polymorphism in a half-binding site creates p53 and estrogen receptor control of vascular endothelial growth factor receptor 1.
    Menendez D; Inga A; Snipe J; Krysiak O; Schönfelder G; Resnick MA
    Mol Cell Biol; 2007 Apr; 27(7):2590-600. PubMed ID: 17242190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regression based predictor for p53 transactivation.
    Gowrisankar S; Jegga AG
    BMC Bioinformatics; 2009 Jul; 10():215. PubMed ID: 19602281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiating the p53 network.
    Menendez D; Inga A; Resnick MA
    Discov Med; 2010 Jul; 10(50):94-100. PubMed ID: 20670604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional control of human p53-regulated genes.
    Riley T; Sontag E; Chen P; Levine A
    Nat Rev Mol Cell Biol; 2008 May; 9(5):402-12. PubMed ID: 18431400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia.
    Huang D; Ovcharenko I
    BMC Genomics; 2017 Mar; 18(1):236. PubMed ID: 28302063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53--a key player in tumoral and evolutionary adaptation: a lesson from the Israeli blind subterranean mole rat.
    Avivi A; Ashur-Fabian O; Amariglio N; Nevo E; Rechavi G
    Cell Cycle; 2005 Mar; 4(3):368-72. PubMed ID: 15701965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression of endogenous p53 transactivation function in HeLa cervical carcinoma cells by human papillomavirus type 16 E6, human mdm-2, and mutant p53.
    Hoppe-Seyler F; Butz K
    J Virol; 1993 Jun; 67(6):3111-7. PubMed ID: 8388491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.