These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16082498)

  • 1. Effects of the piezo-tolerance of cultured deep-sea eel cells on survival rates, cell proliferation, and cytoskeletal structures.
    Koyama S; Kobayashi H; Inoue A; Miwa T; Aizawa M
    Extremophiles; 2005 Dec; 9(6):449-60. PubMed ID: 16082498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue culture of the deep-sea eel Simenchelys parasiticus collected at 1,162 m.
    Koyama S; Horii M; Miwa T; Aizawa M
    Extremophiles; 2003 Jun; 7(3):245-8. PubMed ID: 12768456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of Anisakis simplex L3 in the flesh of white spotted conger (Conger myriaster) by high hydrostatic pressure and its effect on quality.
    Lee KH; Park SY; Ha SD
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jun; 33(6):1010-5. PubMed ID: 27117731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezotolerance of the cytoskeletal structure in cultured deep-sea fish cells using DNA transfection and protein introduction techniques.
    Koyama S; Aizawa M
    Cytotechnology; 2008 Jan; 56(1):19-26. PubMed ID: 19002837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High hydrostatic pressure effects in vivo: changes in cell morphology, microtubule assembly, and actin organization.
    Bourns B; Franklin S; Cassimeris L; Salmon ED
    Cell Motil Cytoskeleton; 1988; 10(3):380-90. PubMed ID: 3052872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A heat-shock-like response with cytoskeletal disruption occurs following hydrostatic pressure in MG-63 osteosarcoma cells.
    Haskin CL; Athanasiou KA; Klebe R; Cameron IL
    Biochem Cell Biol; 1993; 71(7-8):361-71. PubMed ID: 7510113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorbance spectra and molecular structure of the blue-sensitive rod visual pigment in the conger eel (Conger conger).
    Archer S; Hirano J
    Proc Biol Sci; 1996 Jun; 263(1371):761-7. PubMed ID: 8763796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of hydrostatic pressure-induced changes on the cytoskeleton and on the regulation of gene expression in pheochromocytoma (PC-12) cells.
    Wilson RG; Zimmerman S; Zimmerman AM
    Cell Biol Int; 2001; 25(7):667-77. PubMed ID: 11448106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent organic pollutants (PCBs and DDTs) in European conger eel, Conger conger L., from the Ionian Sea (Mediterranean Sea).
    Storelli MM; Perrone VG; Busco VP; Spedicato D; Barone G
    Bull Environ Contam Toxicol; 2012 Jun; 88(6):928-32. PubMed ID: 22450960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schizosaccharomyces pombe is more sensitive to pressure stress than Saccharomyces cerevisiae.
    Sato M; Kobori H; Ishijima SA; Feng ZH; Hamada K; Shimada S; Osumi M
    Cell Struct Funct; 1996 Jun; 21(3):167-74. PubMed ID: 8853553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-hydrostatic-pressure treatment impairs actin cables and budding in Saccharomyces cerevisiae.
    Kawarai T; Arai S; Furukawa S; Ogihara H; Yamasaki M
    J Biosci Bioeng; 2006 Jun; 101(6):515-8. PubMed ID: 16935255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrostatic pressure has different effects on the assembly of tubulin, actin, myosin II, vinculin, talin, vimentin, and cytokeratin in mammalian tissue cells.
    Crenshaw HC; Allen JA; Skeen V; Harris A; Salmon ED
    Exp Cell Res; 1996 Sep; 227(2):285-97. PubMed ID: 8831567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the influence of natural cosolvents on the free energy and conformational landscape of filamentous actin and microtubules.
    Schummel PH; Jaworek MW; Rosin C; Högg J; Winter R
    Phys Chem Chem Phys; 2018 Nov; 20(45):28400-28411. PubMed ID: 30238109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudo-chromosome-length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation.
    Chen J; Zeng H; Lv W; Sun N; Wang C; Xu W; Hu M; Gan X; He L; He S; Fang C
    Sci China Life Sci; 2023 Jun; 66(6):1379-1391. PubMed ID: 36648612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of epidermal cells and cDNA cloning of TNF decoy receptor 3 of conger eel, Conger myriaster.
    Tsutsui S; Yoshino Y; Matsui S; Nakamura O; Muramoto K; Watanabe T
    Fish Shellfish Immunol; 2008 Mar; 24(3):366-71. PubMed ID: 18262436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster.
    Muramoto K; Kagawa D; Sato T; Ogawa T; Nishida Y; Kamiya H
    Comp Biochem Physiol B Biochem Mol Biol; 1999 May; 123(1):33-45. PubMed ID: 10425711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast-binding C-type lectin with opsonic activity from conger eel (Conger myriaster) skin mucus.
    Tsutsui S; Iwamoto K; Nakamura O; Watanabe T
    Mol Immunol; 2007 Feb; 44(5):691-702. PubMed ID: 16753218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pressure stress on the fission yeast Schizosaccharomyces pombe cold-sensitive mutant nda3.
    Sato M; Hasegawa K; Shimada S; Osumi M
    FEMS Microbiol Lett; 1999 Jul; 176(1):31-8. PubMed ID: 10418128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and characterization of a galactose-binding lectin from the skin mucus of the conger eel Conger myriaster.
    Shiomi K; Uematsu H; Yamanaka H; Kikuchi T
    Comp Biochem Physiol B; 1989; 92(2):255-61. PubMed ID: 2924535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell biology of deep-sea multicellular organisms.
    Koyama S
    Cytotechnology; 2007 Dec; 55(2-3):125-33. PubMed ID: 19003002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.