These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

643 related articles for article (PubMed ID: 16082658)

  • 1. Nonlinear optical spectroscopy of chiral molecules.
    Fischer P; Hache F
    Chirality; 2005 Oct; 17(8):421-37. PubMed ID: 16082658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculations of vibrationally resonant sum- and difference-frequency-generation spectra of chiral molecules in solutions: three-wave-mixing vibrational optical activity.
    Choi JH; Cheon S; Cho M
    J Chem Phys; 2010 Feb; 132(7):074506. PubMed ID: 20170236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New electro-optic effect: sum-frequency generation from optically active liquids in the presence of a dc electric field.
    Fischer P; Buckingham AD; Beckwitt K; Wiersma DS; Wise FW
    Phys Rev Lett; 2003 Oct; 91(17):173901. PubMed ID: 14611347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.
    Cheon S; Cho M
    J Phys Chem A; 2009 Mar; 113(11):2438-45. PubMed ID: 19228046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging chirality with surface second harmonic generation microscopy.
    Kriech MA; Conboy JC
    J Am Chem Soc; 2005 Mar; 127(9):2834-5. PubMed ID: 15740102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.
    Zhuo GY; Lee H; Hsu KJ; Huttunen MJ; Kauranen M; Lin YY; Chu SW
    J Microsc; 2014 Mar; 253(3):183-90. PubMed ID: 24392849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically active sum frequency generation from molecules with a chiral center: amino acids as model systems.
    Ji N; Shen YR
    J Am Chem Soc; 2004 Nov; 126(46):15008-9. PubMed ID: 15547980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-photon absorption circular dichroism: a new twist in nonlinear spectroscopy.
    Toro C; De Boni L; Lin N; Santoro F; Rizzo A; Hernandez FE
    Chemistry; 2010 Mar; 16(11):3504-9. PubMed ID: 20162644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-dimensional nonlinear optical activity spectroscopy of coupled multi-chromophore system.
    Choi JH; Cheon S; Lee H; Cho M
    Phys Chem Chem Phys; 2008 Jul; 10(26):3839-56. PubMed ID: 18688382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular origins of the remarkable chiral sensitivity of second-order nonlinear optics.
    Simpson GJ
    Chemphyschem; 2004 Sep; 5(9):1301-10. PubMed ID: 15499846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of classical models of chirality to optical rectification.
    Wang XO; Gong LJ; Li CF
    J Chem Phys; 2008 Aug; 129(7):074708. PubMed ID: 19044793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and identification of optical activity using polarimetry--applications to biophotonics, biomedicine and biochemistry.
    Bahar E
    J Biophotonics; 2008 Aug; 1(3):230-7. PubMed ID: 19412972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly tunable optical activity in planar achiral terahertz metamaterials.
    Singh R; Plum E; Zhang W; Zheludev NI
    Opt Express; 2010 Jun; 18(13):13425-30. PubMed ID: 20588473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotationally resolved optical rotation and circular dichroism effects for symmetric top molecules induced by a resonant circularly polarized pumping optical field.
    Zheng RH; Wei WM
    J Phys Chem A; 2006 Jul; 110(29):9282-91. PubMed ID: 16854045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Irreducible representation and projection operator application to understanding nonlinear optical phenomena: hyper-Raman, sum frequency generation, and four-wave mixing spectroscopy.
    Lee SH; Wang J; Krimm S; Chen Z
    J Phys Chem A; 2006 Jun; 110(22):7035-44. PubMed ID: 16737251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of chiral fields in a symmetric environment.
    Schäferling M; Yin X; Giessen H
    Opt Express; 2012 Nov; 20(24):26326-36. PubMed ID: 23187487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amide I Raman optical activity of polypeptides: fragment approximation.
    Choi JH; Cho M
    J Chem Phys; 2009 Jan; 130(1):014503. PubMed ID: 19140618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissymmetries in fluorescence excitation and emission from single chiral molecules.
    Hassey-Paradise R; Cyphersmith A; Tilley AM; Mortsolf T; Basak D; Venkataraman D; Barnes MD
    Chirality; 2009; 21 Suppl 1():E265-76. PubMed ID: 20014034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality transition in the epoxidation of (-)-alpha-pinene and successive hydrolysis studied by Raman optical activity and DFT.
    Qiu S; Li G; Liu P; Wang C; Feng Z; Li C
    Phys Chem Chem Phys; 2010 Mar; 12(12):3005-13. PubMed ID: 20449393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: an overview.
    Gottarelli G; Lena S; Masiero S; Pieraccini S; Spada GP
    Chirality; 2008 Mar; 20(3-4):471-85. PubMed ID: 17918751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.