These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16082662)

  • 1. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: concept, theory, and validation.
    Amatore C; Oleinick A; Klymenko OV; Svir I
    Chemphyschem; 2005 Aug; 6(8):1581-9. PubMed ID: 16082662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ and on-line monitoring of hydrodynamic flow profiles in microfluidic channels based on microelectrochemistry: optimization of channel geometrical parameters for best performance of flow profile reconstruction.
    Amatore C; Klymenko OV; Oleinick A; Svir I
    Chemphyschem; 2007 Aug; 8(12):1870-4. PubMed ID: 17663494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: optimization of electrode locations.
    Amatore C; Klymenko OV; Svir I
    Chemphyschem; 2006 Feb; 7(2):482-7. PubMed ID: 16463337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical determination of flow velocity profile in a microfluidic channel from steady-state currents: numerical approach and optimization of electrode layout.
    Amatore C; Klymenko OV; Oleinick AI; Svir I
    Anal Chem; 2009 Sep; 81(18):7667-76. PubMed ID: 19697937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state.
    Amatore C; Da Mota N; Lemmer C; Pebay C; Sella C; Thouin L
    Anal Chem; 2008 Dec; 80(24):9483-90. PubMed ID: 19007242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic channel flow cell for electrochemical ESR.
    Wain AJ; Compton RG; Le Roux R; Matthews S; Yunus K; Fisher AC
    J Phys Chem B; 2006 Dec; 110(51):26040-4. PubMed ID: 17181255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recirculation of nanoliter volumes within microfluidic channels.
    Lammertink RG; Schlautmann S; Besselink GA; Schasfoort RB
    Anal Chem; 2004 Jun; 76(11):3018-22. PubMed ID: 15167777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.
    Siria A; Biance AL; Ybert C; Bocquet L
    Lab Chip; 2012 Mar; 12(5):872-5. PubMed ID: 22234376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels.
    Morf WE; van der Wal PD; de Rooij NF
    Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of membrane-type microvalves in rectangular microfluidic channels via seal photopolymerization.
    Park W; Han S; Kwon S
    Lab Chip; 2010 Oct; 10(20):2814-7. PubMed ID: 20721367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of atomistic physics on electro-osmotic flow: an analysis based on density functional theory.
    Nilson RH; Griffiths SK
    J Chem Phys; 2006 Oct; 125(16):164510. PubMed ID: 17092108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lattice Boltzmann algorithm for electro-osmotic flows in microfluidic devices.
    Guo Z; Zhao TS; Shi Y
    J Chem Phys; 2005 Apr; 122(14):144907. PubMed ID: 15847565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy.
    Liu K; Tian Y; Burrows SM; Reif RD; Pappas D
    Anal Chim Acta; 2009 Sep; 651(1):85-90. PubMed ID: 19733740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic flow in a rectangular channel with variable wall zeta-potential: comparison of numerical simulation with asymptotic theory.
    Datta S; Ghosal S; Patankar NA
    Electrophoresis; 2006 Feb; 27(3):611-9. PubMed ID: 16456890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and experiments of transport at channel microband electrodes under laminar flow. 3. Electrochemical detection at electrode arrays under steady state.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2010 Mar; 82(6):2434-40. PubMed ID: 20184349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical and experimental study of the electrophoretic extraction of ions from a pressure driven flow in a microfluidic device.
    Reschke BR; Luo H; Schiffbauer J; Edwards BF; Timperman AT
    Lab Chip; 2009 Aug; 9(15):2203-11. PubMed ID: 19606297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of diffusion processes at recessed disk microelectrode arrays using the quasi-conformal mapping approach.
    Amatore C; Oleinick AI; Svir I
    Anal Chem; 2009 Jun; 81(11):4397-405. PubMed ID: 19402648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.