These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 16082778)
1. Evolutionary clues to eukaryotic DNA clamp-loading mechanisms: analysis of the functional constraints imposed on replication factor C AAA+ ATPases. Neuwald AF Nucleic Acids Res; 2005; 33(11):3614-28. PubMed ID: 16082778 [TBL] [Abstract][Full Text] [Related]
2. A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA. Sakato M; O'Donnell M; Hingorani MM J Mol Biol; 2012 Feb; 416(2):163-75. PubMed ID: 22197374 [TBL] [Abstract][Full Text] [Related]
3. Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C. Marzahn MR; Hayner JN; Meyer JA; Bloom LB Biochim Biophys Acta; 2015 Jan; 1854(1):31-8. PubMed ID: 25450506 [TBL] [Abstract][Full Text] [Related]
4. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Bowman GD; O'Donnell M; Kuriyan J Nature; 2004 Jun; 429(6993):724-30. PubMed ID: 15201901 [TBL] [Abstract][Full Text] [Related]
5. Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader. Gaubitz C; Liu X; Pajak J; Stone NP; Hayes JA; Demo G; Kelch BA Elife; 2022 Feb; 11():. PubMed ID: 35179493 [TBL] [Abstract][Full Text] [Related]
6. The RFC clamp loader: structure and function. Yao NY; O'Donnell M Subcell Biochem; 2012; 62():259-79. PubMed ID: 22918590 [TBL] [Abstract][Full Text] [Related]
7. Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Gaubitz C; Liu X; Magrino J; Stone NP; Landeck J; Hedglin M; Kelch BA Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23571-23580. PubMed ID: 32907938 [TBL] [Abstract][Full Text] [Related]
8. Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism. Liu J; Zhou Y; Hingorani MM J Biol Chem; 2017 Sep; 292(38):15892-15906. PubMed ID: 28808059 [TBL] [Abstract][Full Text] [Related]
9. Hypothesis: bacterial clamp loader ATPase activation through DNA-dependent repositioning of the catalytic base and of a trans-acting catalytic threonine. Neuwald AF Nucleic Acids Res; 2006; 34(18):5280-90. PubMed ID: 17012286 [TBL] [Abstract][Full Text] [Related]
10. The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading. Johnson A; Yao NY; Bowman GD; Kuriyan J; O'Donnell M J Biol Chem; 2006 Nov; 281(46):35531-43. PubMed ID: 16980295 [TBL] [Abstract][Full Text] [Related]
11. Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen. Yao N; Coryell L; Zhang D; Georgescu RE; Finkelstein J; Coman MM; Hingorani MM; O'Donnell M J Biol Chem; 2003 Dec; 278(50):50744-53. PubMed ID: 14530260 [TBL] [Abstract][Full Text] [Related]
12. Analysis of the role of PCNA-DNA contacts during clamp loading. McNally R; Bowman GD; Goedken ER; O'Donnell M; Kuriyan J BMC Struct Biol; 2010 Jan; 10():3. PubMed ID: 20113510 [TBL] [Abstract][Full Text] [Related]
13. Replication factor C from the hyperthermophilic archaeon Pyrococcus abyssi does not need ATP hydrolysis for clamp-loading and contains a functionally conserved RFC PCNA-binding domain. Henneke G; Gueguen Y; Flament D; Azam P; Querellou J; Dietrich J; Hübscher U; Raffin JP J Mol Biol; 2002 Nov; 323(5):795-810. PubMed ID: 12417194 [TBL] [Abstract][Full Text] [Related]
14. Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process. Venclovas C; Colvin ME; Thelen MP Protein Sci; 2002 Oct; 11(10):2403-16. PubMed ID: 12237462 [TBL] [Abstract][Full Text] [Related]
15. Cryo-EM reveals a nearly complete PCNA loading process and unique features of the human alternative clamp loader CTF18-RFC. He Q; Wang F; O'Donnell ME; Li H Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2319727121. PubMed ID: 38669181 [TBL] [Abstract][Full Text] [Related]
16. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. Ohashi E; Tsurimoto T Adv Exp Med Biol; 2017; 1042():135-162. PubMed ID: 29357057 [TBL] [Abstract][Full Text] [Related]
17. The PCNA-RFC families of DNA clamps and clamp loaders. Majka J; Burgers PM Prog Nucleic Acid Res Mol Biol; 2004; 78():227-60. PubMed ID: 15210332 [TBL] [Abstract][Full Text] [Related]
18. Unexpected new insights into DNA clamp loaders: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage. Li H; O'Donnell M; Kelch B Bioessays; 2022 Nov; 44(11):e2200154. PubMed ID: 36116108 [TBL] [Abstract][Full Text] [Related]
19. The clamp-loading complex for processive DNA replication. Miyata T; Oyama T; Mayanagi K; Ishino S; Ishino Y; Morikawa K Nat Struct Mol Biol; 2004 Jul; 11(7):632-6. PubMed ID: 15208692 [TBL] [Abstract][Full Text] [Related]
20. Clamp loader ATPases and the evolution of DNA replication machinery. Kelch BA; Makino DL; O'Donnell M; Kuriyan J BMC Biol; 2012 Apr; 10():34. PubMed ID: 22520345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]