These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption. Venkatraman A; Landar A; Davis AJ; Ulasova E; Page G; Murphy MP; Darley-Usmar V; Bailey SM Am J Physiol Gastrointest Liver Physiol; 2004 Apr; 286(4):G521-7. PubMed ID: 14670822 [TBL] [Abstract][Full Text] [Related]
3. Fluorescein as a versatile tag for enhanced selectivity in analyzing cysteine-containing proteins/peptides using mass spectrometry. Chen SH; Hsu JL; Lin FS Anal Chem; 2008 Jul; 80(13):5251-9. PubMed ID: 18512949 [TBL] [Abstract][Full Text] [Related]
4. Tandem mass spectrometric characterization of thiol peptides modified by the chemoselective cationic sulfhydryl reagent (4-iodobutyl)triphenylphosphonium--effects of a cationic thiol derivatization on peptide fragmentation. Wang J; Zhang J; Arbogast B; Maier CS J Am Soc Mass Spectrom; 2011 Oct; 22(10):1771-83. PubMed ID: 21952891 [TBL] [Abstract][Full Text] [Related]
5. Comparison of CID spectra of singly charged polypeptide antibiotic precursor ions obtained by positive-ion vacuum MALDI IT/RTOF and TOF/RTOF, AP-MALDI-IT and ESI-IT mass spectrometry. Pittenauer E; Zehl M; Belgacem O; Raptakis E; Mistrik R; Allmaier G J Mass Spectrom; 2006 Apr; 41(4):421-47. PubMed ID: 16604520 [TBL] [Abstract][Full Text] [Related]
6. Mass spectrometric characterization of lipid-modified peptides for the analysis of acylated proteins. Hoffman MD; Kast J J Mass Spectrom; 2006 Feb; 41(2):229-41. PubMed ID: 16421873 [TBL] [Abstract][Full Text] [Related]
7. Specific modification of mitochondrial protein thiols in response to oxidative stress: a proteomics approach. Lin TK; Hughes G; Muratovska A; Blaikie FH; Brookes PS; Darley-Usmar V; Smith RA; Murphy MP J Biol Chem; 2002 May; 277(19):17048-56. PubMed ID: 11861642 [TBL] [Abstract][Full Text] [Related]
8. Tandem mass spectrometry acquisition approaches to enhance identification of protein-protein interactions using low-energy collision-induced dissociative chemical crosslinking reagents. Soderblom EJ; Bobay BG; Cavanagh J; Goshe MB Rapid Commun Mass Spectrom; 2007; 21(21):3395-408. PubMed ID: 17902198 [TBL] [Abstract][Full Text] [Related]
9. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry. Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668 [TBL] [Abstract][Full Text] [Related]
10. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Wiese S; Reidegeld KA; Meyer HE; Warscheid B Proteomics; 2007 Feb; 7(3):340-50. PubMed ID: 17177251 [TBL] [Abstract][Full Text] [Related]
11. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Toews J; Rogalski JC; Clark TJ; Kast J Anal Chim Acta; 2008 Jun; 618(2):168-83. PubMed ID: 18513538 [TBL] [Abstract][Full Text] [Related]
12. Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. Pan S; Rush J; Peskind ER; Galasko D; Chung K; Quinn J; Jankovic J; Leverenz JB; Zabetian C; Pan C; Wang Y; Oh JH; Gao J; Zhang J; Montine T; Zhang J J Proteome Res; 2008 Feb; 7(2):720-30. PubMed ID: 18186601 [TBL] [Abstract][Full Text] [Related]
13. A novel class of chemically modified iodo-containing resins: design, synthesis and application to mass spectrometry-based proteome analysis. Zhang L; Guo YL; Liu HQ J Mass Spectrom; 2004 Apr; 39(4):447-57. PubMed ID: 15103659 [TBL] [Abstract][Full Text] [Related]
14. Thiol metabolomics of endothelial cells using capillary liquid chromatography mass spectrometry with isotope coded affinity tags. Yuan W; Edwards JL J Chromatogr A; 2011 May; 1218(18):2561-8. PubMed ID: 21420094 [TBL] [Abstract][Full Text] [Related]
15. Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. Xu K; Zhang Y; Tang B; Laskin J; Roach PJ; Chen H Anal Chem; 2010 Aug; 82(16):6926-32. PubMed ID: 20704382 [TBL] [Abstract][Full Text] [Related]
16. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes. Rubino FM; Pitton M; Brambilla G; Colombi A J Mass Spectrom; 2006 Dec; 41(12):1578-93. PubMed ID: 17136764 [TBL] [Abstract][Full Text] [Related]
17. Low energy peptide fragmentations in an ESI-Q-Tof type mass spectrometer. Mouls L; Aubagnac JL; Martinez J; Enjalbal C J Proteome Res; 2007 Apr; 6(4):1378-91. PubMed ID: 17311442 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the Drosophila melanogaster mitochondrial proteome. Alonso J; Rodriguez JM; Baena-López LA; Santarén JF J Proteome Res; 2005; 4(5):1636-45. PubMed ID: 16212416 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix. Burns RJ; Smith RA; Murphy MP Arch Biochem Biophys; 1995 Sep; 322(1):60-8. PubMed ID: 7574695 [TBL] [Abstract][Full Text] [Related]
20. Method for quantitative proteomics research by using metal element chelated tags coupled with mass spectrometry. Liu H; Zhang Y; Wang J; Wang D; Zhou C; Cai Y; Qian X Anal Chem; 2006 Sep; 78(18):6614-21. PubMed ID: 16970341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]