BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 16083359)

  • 1. Upregulation of EphA3 receptor after spinal cord injury.
    Irizarry-Ramírez M; Willson CA; Cruz-Orengo L; Figueroa J; Velázquez I; Jones H; Foster RD; Whittemore SR; Miranda JD
    J Neurotrauma; 2005 Aug; 22(8):929-35. PubMed ID: 16083359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of Reticulon 3 Enhances CNS Axon Regeneration and Functional Recovery after Traumatic Injury.
    Alhajlah S; Thompson AM; Ahmed Z
    Cells; 2021 Aug; 10(8):. PubMed ID: 34440784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AAV-mediated inhibition of ULK1 promotes axonal regeneration in the central nervous system in vitro and in vivo.
    Ribas VT; Vahsen BF; Tatenhorst L; Estrada V; Dambeck V; Almeida RA; Bähr M; Michel U; Koch JC; Müller HW; Lingor P
    Cell Death Dis; 2021 Feb; 12(2):213. PubMed ID: 33637688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global expression of NGF promotes sympathetic axonal growth in CNS white matter but does not alter its parallel orientation.
    Pettigrew DB; Li YQ; Kuntz C; Crutcher KA
    Exp Neurol; 2007 Jan; 203(1):95-109. PubMed ID: 16989811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Reducing Suppressors of Cytokine Signaling-3 (SOCS3) Expression on Dendritic Outgrowth and Demyelination after Spinal Cord Injury.
    Park KW; Lin CY; Li K; Lee YS
    PLoS One; 2015; 10(9):e0138301. PubMed ID: 26384335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KIF2A characterization after spinal cord injury.
    Seira O; Liu J; Assinck P; Ramer M; Tetzlaff W
    Cell Mol Life Sci; 2019 Nov; 76(21):4355-4368. PubMed ID: 31041455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asporin and CD109, expressed in the injured neonatal spinal cord, attenuate axonal re-growth in vitro.
    Hosen S; Ikeda-Yorifuji I; Yamashita T
    Neurosci Lett; 2024 Jun; 833():137832. PubMed ID: 38796094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquaporins in spinal cord injury: the janus face of aquaporin 4.
    Nesic O; Guest JD; Zivadinovic D; Narayana PA; Herrera JJ; Grill RJ; Mokkapati VU; Gelman BB; Lee J
    Neuroscience; 2010 Jul; 168(4):1019-35. PubMed ID: 20109536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion or Inhibition of Astrocytic Transglutaminase 2 Promotes Functional Recovery after Spinal Cord Injury.
    Elahi A; Emerson J; Rudlong J; Keillor JW; Salois G; Visca A; Girardi P; Johnson GVW; Pröschel C
    Cells; 2021 Oct; 10(11):. PubMed ID: 34831164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic regulation of axon outgrowth and regeneration in CNS injury: the first steps forward.
    Lindner R; Puttagunta R; Di Giovanni S
    Neurotherapeutics; 2013 Oct; 10(4):771-81. PubMed ID: 23881454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and Cellular Localization of IFITM1 in Normal and Injured Rat Spinal Cords.
    Wang Y; Lin YH; Wu Y; Yao ZF; Tang J; Shen L; Wang R; Ding SQ; Hu JG; Lü HZ
    J Histochem Cytochem; 2018 Mar; 66(3):175-187. PubMed ID: 29300519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. USP1/UAF1-Stabilized METTL3 Promotes Reactive Astrogliosis and Improves Functional Recovery after Spinal Cord Injury through m
    Ge X; Ye W; Zhu Y; Cui M; Zhou J; Xiao C; Jiang D; Tang P; Wang J; Wang Z; Ji C; Zhou X; Cao X; Liu W; Cai W
    J Neurosci; 2023 Mar; 43(9):1456-1474. PubMed ID: 36653190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RXR
    Yu P; Yang K; Jiang M
    Oxid Med Cell Longev; 2021; 2021():8253742. PubMed ID: 33628383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Electrospun Nanofibers on Motor Function Recovery After Spinal Cord Injury: A Systematic Review and Meta-Analysis.
    Haeri Moghaddam N; Hashamdar S; Hamblin MR; Ramezani F
    World Neurosurg; 2024 Jan; 181():96-106. PubMed ID: 37852475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids.
    Sun Z; Chen Z; Yin M; Wu X; Guo B; Cheng X; Quan R; Sun Y; Zhang Q; Fan Y; Jin C; Yin Y; Hou X; Liu W; Shu M; Xue X; Shi Y; Chen B; Xiao Z; Dai J; Zhao Y
    Cell Stem Cell; 2024 May; 31(5):772-787.e11. PubMed ID: 38565140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nogo-A expression dynamically varies after spinal cord injury.
    Wang JW; Yang JF; Ma Y; Hua Z; Guo Y; Gu XL; Zhang YF
    Neural Regen Res; 2015 Feb; 10(2):225-9. PubMed ID: 25883620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complement C6 deficiency exacerbates pathophysiology after spinal cord injury.
    Su D; Hooshmand MJ; Galvan MD; Nishi RA; Cummings BJ; Anderson AJ
    Sci Rep; 2020 Nov; 10(1):19500. PubMed ID: 33177623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetics of neural repair following spinal cord injury.
    York EM; Petit A; Roskams AJ
    Neurotherapeutics; 2013 Oct; 10(4):757-70. PubMed ID: 24081781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro model of neurotrauma using the chick embryo to test regenerative bioimplantation.
    Mogas Barcons A; Chari DM; Adams C
    ALTEX; 2024; 41(2):202-212. PubMed ID: 37921418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unliganded EphA3 dimerization promoted by the SAM domain.
    Singh DR; Cao Q; King C; Salotto M; Ahmed F; Zhou XY; Pasquale EB; Hristova K
    Biochem J; 2015 Oct; 471(1):101-9. PubMed ID: 26232493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.