These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 16083890)

  • 1. Evaluation of the superficial characteristics of articular cartilage using evanescent waves in the friction tests with intermittent sliding and loading.
    Naka MH; Hattori K; Ikeuchi K
    J Biomech; 2006; 39(12):2164-70. PubMed ID: 16083890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effect of collagen network degradation on the frictional characteristics of articular cartilage using a simultaneous analysis of the contact condition.
    Naka MH; Hattori K; Ohashi T; Ikeuchi K
    Clin Biomech (Bristol); 2005 Dec; 20(10):1111-8. PubMed ID: 16098644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of removal of the disc on the friction in the temporomandibular joint.
    Tanaka E; Dalla-Bona DA; Iwabe T; Kawai N; Yamano E; van Eijden T; Tanaka M; Miyauchi M; Takata T; Tanne K
    J Oral Maxillofac Surg; 2006 Aug; 64(8):1221-4. PubMed ID: 16860213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An equine joint friction test model using a cartilage-on-cartilage arrangement.
    Noble P; Collin B; Lecomte-Beckers J; Magnée A; Denoix JM; Serteyn D
    Vet J; 2010 Feb; 183(2):148-52. PubMed ID: 19141370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage.
    Forster H; Fisher J
    Proc Inst Mech Eng H; 1999; 213(4):329-45. PubMed ID: 10466364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of nanoscale friction and adhesion properties of articular cartilage on contact load.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Apr; 44(7):1340-5. PubMed ID: 21316681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Letter to the editor commenting on "hydrostatic pressurization and depletion of trapped lubricant pool during creep and sliding contact of a rippled indenter against a biphasic articular cartilage layer.".
    Mann RW
    J Biomech Eng; 2004 Aug; 126(4):538; author reply 539. PubMed ID: 15543875
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of proteoglycan contents and of tissue hydration on the frictional characteristics of articular cartilage.
    Naka MH; Morita Y; Ikeuchi K
    Proc Inst Mech Eng H; 2005 May; 219(3):175-82. PubMed ID: 15934393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphasic surface amorphous layer lubrication of articular cartilage.
    Graindorge S; Ferrandez W; Jin Z; Ingham E; Grant C; Twigg P; Fisher J
    Med Eng Phys; 2005 Dec; 27(10):836-44. PubMed ID: 16046176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frictional behaviour of bovine articular cartilage.
    Jin ZM; Pickard JE; Forster H; Ingham E; Fisher J
    Biorheology; 2000; 37(1-2):57-63. PubMed ID: 10912178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The biological role of the structural-deformable properties of the cartilage and of the synovial fluid in the reduction of intra- articular friction].
    Kupchinov BI; Ermakov SF; Rodnenkov VG; Beloenko ED
    Ortop Travmatol Protez; 1989 Oct; (10):7-11. PubMed ID: 2622643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on "Hydrostatic pressurization and depletion of trapped lubricant pool during creep contact of a rippled indenter against a biphasic articular cartilage layer".
    McCutchen CW
    J Biomech Eng; 2004 Aug; 126(4):536; author reply 537. PubMed ID: 15543874
    [No Abstract]   [Full Text] [Related]  

  • 13. The role of lubricant entrapment at biological interfaces: reduction of friction and adhesion in articular cartilage.
    Chan SM; Neu CP; Komvopoulos K; Reddi AH
    J Biomech; 2011 Jul; 44(11):2015-20. PubMed ID: 21679953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the friction coefficient of articular cartilage by TGF-beta1 and IL-1beta.
    DuRaine G; Neu CP; Chan SM; Komvopoulos K; June RK; Reddi AH
    J Orthop Res; 2009 Feb; 27(2):249-56. PubMed ID: 18683879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frictional properties of regenerated cartilage in vitro.
    Morita Y; Tomita N; Aoki H; Sonobe M; Wakitani S; Tamada Y; Suguro T; Ikeuchi K
    J Biomech; 2006; 39(1):103-9. PubMed ID: 16271593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of experimental cartilage damage and impairment and restoration of synovial lubrication on friction in the temporomandibular joint.
    Tanaka E; Iwabe T; Dalla-Bona DA; Kawai N; van Eijden T; Tanaka M; Kitagawa S; Takata T; Tanne K
    J Orofac Pain; 2005; 19(4):331-6. PubMed ID: 16279485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of synovial fluid on boundary lubrication of articular cartilage.
    Schmidt TA; Sah RL
    Osteoarthritis Cartilage; 2007 Jan; 15(1):35-47. PubMed ID: 16859933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor beta signaling.
    Neu CP; Khalafi A; Komvopoulos K; Schmid TM; Reddi AH
    Arthritis Rheum; 2007 Nov; 56(11):3706-14. PubMed ID: 17968924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-directional in vitro investigation into friction, damage and wear of innovative chondroplasty materials against articular cartilage.
    Northwood E; Fisher J
    Clin Biomech (Bristol); 2007 Aug; 22(7):834-42. PubMed ID: 17521786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The frictional coefficient of the temporomandibular joint and its dependency on the magnitude and duration of joint loading.
    Tanaka E; Kawai N; Tanaka M; Todoh M; van Eijden T; Hanaoka K; Dalla-Bona DA; Takata T; Tanne K
    J Dent Res; 2004 May; 83(5):404-7. PubMed ID: 15111633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.