These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 16084199)

  • 21. The relationship between vertical craniofacial morphology and the sagittal path of mandibular movements.
    Farella M; Iodice G; Michelotti A; Leonardi R
    J Oral Rehabil; 2005 Dec; 32(12):857-62. PubMed ID: 16297031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliability and sensitivity of jerk-cost measurement for evaluating irregularity of chewing jaw movements.
    Takada K; Yashiro K; Takagi M
    Physiol Meas; 2006 Jul; 27(7):609-22. PubMed ID: 16705259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in the masticatory cycle after treatment of posterior crossbite in children aged 4 to 5 years.
    Neto GP; Puppin-Rontani RM; Garcia RC
    Am J Orthod Dentofacial Orthop; 2007 Apr; 131(4):464-72. PubMed ID: 17418712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of bolus size and hardness on within-subject variability of chewing cycle kinematics.
    Wintergerst AM; Throckmorton GS; Buschang PH
    Arch Oral Biol; 2008 Apr; 53(4):369-75. PubMed ID: 18093571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental jaw-muscle pain has a differential effect on different jaw movement tasks.
    Sae-Lee D; Whittle T; Peck CC; Forte AR; Klineberg IJ; Murray GM
    J Orofac Pain; 2008; 22(1):15-29. PubMed ID: 18351031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oral physiology and mastication.
    van der Bilt A; Engelen L; Pereira LJ; van der Glas HW; Abbink JH
    Physiol Behav; 2006 Aug; 89(1):22-7. PubMed ID: 16564557
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The determination of optimal human jaw movements based on their association with chewing performance.
    Wilding RJ; Lewin A
    Arch Oral Biol; 1994 Apr; 39(4):333-43. PubMed ID: 8024498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of principal component analysis to the elucidation of perioral soft tissue movements during mastication.
    Sakaguchi K; Kawasaki T; Kawashima T; Toda M; Nakagawa T; Yamada T; Araki O
    J Oral Rehabil; 2001 Mar; 28(3):286-93. PubMed ID: 11394376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of occlusal vertical dimension on the masticatory performance during chewing with maxillary splints.
    Olthoff LW; van der Glas HW; van der Bilt A
    J Oral Rehabil; 2007 Aug; 34(8):560-5. PubMed ID: 17650165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence of sex-specific differences in masticatory jaw movement patterns.
    Gerstner GE; Parekh VV
    J Dent Res; 1997 Mar; 76(3):796-806. PubMed ID: 9109830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of static and dynamic occlusal characteristics and muscle force on masticatory performance in dentate adults.
    Lujan-Climent M; Martinez-Gomis J; Palau S; Ayuso-Montero R; Salsench J; Peraire M
    Eur J Oral Sci; 2008 Jun; 116(3):229-36. PubMed ID: 18471241
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of an auditory cue on chewing cycle kinematics.
    Wintergerst AM; Buschang PH; Hutchins B; Throckmorton GS
    Arch Oral Biol; 2006 Jan; 51(1):50-7. PubMed ID: 16005843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restoration of occlusal and proximal contacts by a single molar crown improves the smoothness of the masticatory movement.
    Watamoto T; Egusa H; Mizumori T; Yashiro K; Takada K; Yatani H
    J Dent; 2008 Dec; 36(12):984-92. PubMed ID: 18790556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of unilateral lingual nerve injury on the kinematics of mastication in pigs.
    Montuelle SJ; Olson RA; Curtis H; Sidote JV; Williams SH
    Arch Oral Biol; 2019 Feb; 98():226-237. PubMed ID: 30522042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The time allometry of mammalian chewing movements: chewing frequency scales with body mass in mammals.
    Druzinsky RE
    J Theor Biol; 1993 Feb; 160(4):427-40. PubMed ID: 8501916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between anteroposterior maxillomandibular morphology and masticatory jaw movement patterns.
    Gerstner GE; Marchi F; Haerian H
    Am J Orthod Dentofacial Orthop; 1999 Mar; 115(3):258-66. PubMed ID: 10066973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluoroscopic evaluation of tongue and jaw movements during mastication in healthy humans.
    Taniguchi H; Matsuo K; Okazaki H; Yoda M; Inokuchi H; Gonzalez-Fernandez M; Inoue M; Palmer JB
    Dysphagia; 2013 Sep; 28(3):419-27. PubMed ID: 23446812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of changing the chewing region on mandibular movement.
    Hashii K; Tomida M; Yamashita S
    Aust Dent J; 2009 Mar; 54(1):38-44. PubMed ID: 19228131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationships between masticatory rhythmicity, body mass and cephalometrically-determined aesthetic and functional variables during development in humans.
    Gerstner GE; Madhavan S; Braun TM
    Arch Oral Biol; 2014 Jul; 59(7):711-21. PubMed ID: 24798980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of rhythmic jaw movements of the rabbit.
    Morimoto T; Inoue T; Nakamura T; Kawamura Y
    Arch Oral Biol; 1985; 30(9):673-7. PubMed ID: 3865644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.