BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

689 related articles for article (PubMed ID: 16084267)

  • 1. Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk.
    Røssland E; Langsrud T; Sørhaug T
    Int J Food Microbiol; 2005 Aug; 103(1):69-77. PubMed ID: 16084267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk.
    Røssland E; Langsrud T; Granum PE; Sørhaug T
    Int J Food Microbiol; 2005 Feb; 98(2):193-200. PubMed ID: 15681046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk.
    Røssland E; Andersen Borge GI; Langsrud T; Sørhaug T
    Int J Food Microbiol; 2003 Dec; 89(2-3):205-12. PubMed ID: 14623386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation of reconstituted skim milk supplemented with soy protein isolate by probiotic organisms.
    Pham TT; Shah NP
    J Food Sci; 2008 Mar; 73(2):M62-6. PubMed ID: 18298737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and metabolism of selected strains of probiotic bacteria, in maize porridge with added malted barley.
    Helland MH; Wicklund T; Narvhus JA
    Int J Food Microbiol; 2004 Mar; 91(3):305-13. PubMed ID: 14984778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.
    Panagou EZ; Schillinger U; Franz CM; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial properties of lactic acid bacteria and yeast-LAB cultures isolated from traditional fermented milk against pathogenic Escherichia coli and Salmonella enteritidis strains.
    Mufandaedza J; Viljoen BC; Feresu SB; Gadaga TH
    Int J Food Microbiol; 2006 Apr; 108(1):147-52. PubMed ID: 16387379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting germination and growth of Bacillus cereus spores in milk.
    Helmy ZA; Abd-El-Bakey A; Mohamed EI
    Zentralbl Mikrobiol; 1984; 139(2):135-41. PubMed ID: 6428077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small-scale preparation.
    Coulin P; Farah Z; Assanvo J; Spillmann H; Puhan Z
    Int J Food Microbiol; 2006 Feb; 106(2):131-6. PubMed ID: 16213052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of carbon dioxide on the growth of Bacillus cereus spores in milk during storage.
    Werner BG; Hotchkiss JH
    J Dairy Sci; 2002 Jan; 85(1):15-8. PubMed ID: 11860107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of porcine bile on survival of Bacillus cereus vegetative cells and Haemolysin BL enterotoxin production in reconstituted human small intestine media.
    Clavel T; Carlin F; Dargaignaratz C; Lairon D; Nguyen-The C; Schmitt P
    J Appl Microbiol; 2007 Nov; 103(5):1568-75. PubMed ID: 17953568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling Yersinia enterocolitica inactivation in coculture experiments with Lactobacillus sakei as based on pH and lactic acid profiles.
    Janssen M; Geeraerd AH; Logist F; De Visscher Y; Vereecken KM; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2006 Aug; 111(1):59-72. PubMed ID: 16876279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture.
    Mellefont LA; McMeekin TA; Ross T
    Int J Food Microbiol; 2008 Jan; 121(2):157-68. PubMed ID: 18083261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production and stability of chlorine dioxide in organic acid solutions as affected by pH, type of acid, and concentration of sodium chlorite, and its effectiveness in inactivating Bacillus cereus spores.
    Kim H; Kang Y; Beuchat LR; Ryu JH
    Food Microbiol; 2008 Dec; 25(8):964-9. PubMed ID: 18954731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial growth in dry grain food (Sunsik) beverages prepared with water, milk, soymilk, or honey-water.
    Jung JH; Lee SY
    J Food Sci; 2010 May; 75(4):M239-42. PubMed ID: 20546416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them.
    Simova E; Simov Z; Beshkova D; Frengova G; Dimitrov Z; Spasov Z
    Int J Food Microbiol; 2006 Mar; 107(2):112-23. PubMed ID: 16297479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacturing of fermented goat milk with a mixed starter culture of Bifidobacterium animalis and Lactobacillus acidophilus in a controlled bioreactor.
    Kongo JM; Gomes AM; Malcata FX
    Lett Appl Microbiol; 2006 Jun; 42(6):595-9. PubMed ID: 16706898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defined multi-species semi-liquid ready-to-use sourdough starter.
    Gaggiano M; Di Cagno R; De Angelis M; Arnault P; Tossut P; Fox PF; Gobbetti M
    Food Microbiol; 2007 Feb; 24(1):15-24. PubMed ID: 16943090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous fermentation of traditional sago starch in Papua New Guinea.
    Greenhill AR; Shipton WA; Blaney BJ; Brock IJ; Kupz A; Warner JM
    Food Microbiol; 2009 Apr; 26(2):136-41. PubMed ID: 19171254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional fermented whey-based beverage using lactic acid bacteria.
    Pescuma M; Hébert EM; Mozzi F; de Valdez GF
    Int J Food Microbiol; 2010 Jun; 141(1-2):73-81. PubMed ID: 20483186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.