BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16084389)

  • 21. Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases.
    Manthei KA; Hill MC; Burke JE; Butcher SE; Keck JL
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4292-7. PubMed ID: 25831501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single molecule kinetics uncover roles for E. coli RecQ DNA helicase domains and interaction with SSB.
    Bagchi D; Manosas M; Zhang W; Manthei KA; Hodeib S; Ducos B; Keck JL; Croquette V
    Nucleic Acids Res; 2018 Sep; 46(16):8500-8515. PubMed ID: 30053104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural characterization of the RNase E S1 domain and identification of its oligonucleotide-binding and dimerization interfaces.
    Schubert M; Edge RE; Lario P; Cook MA; Strynadka NC; Mackie GA; McIntosh LP
    J Mol Biol; 2004 Jul; 341(1):37-54. PubMed ID: 15312761
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and functional characterizations reveal the importance of a zinc binding domain in Bloom's syndrome helicase.
    Guo RB; Rigolet P; Zargarian L; Fermandjian S; Xi XG
    Nucleic Acids Res; 2005; 33(10):3109-24. PubMed ID: 15930159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR structure of the N-terminal-most HRDC1 domain of RecQ helicase from Deinococcus radiodurans.
    Liu S; Zhang W; Gao Z; Ming Q; Hou H; Lan W; Wu H; Cao C; Dong Y
    FEBS Lett; 2013 Aug; 587(16):2635-42. PubMed ID: 23831579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.
    Sami F; Gary RK; Fang Y; Sharma S
    Mutat Res; 2016 Aug; 790():8-18. PubMed ID: 27248010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of the HRDC domain of human Bloom syndrome protein BLM.
    Sato A; Mishima M; Nagai A; Kim SY; Ito Y; Hakoshima T; Jee JG; Kitano K
    J Biochem; 2010 Oct; 148(4):517-25. PubMed ID: 20739603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinformatic analysis of RecQ4 helicases reveals the presence of a RQC domain and a Zn knuckle.
    Marino F; Vindigni A; Onesti S
    Biophys Chem; 2013; 177-178():34-9. PubMed ID: 23624328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure and structure-based mutational analyses of RNase HIII from Bacillus stearothermophilus: a new type 2 RNase H with TBP-like substrate-binding domain at the N terminus.
    Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2006 Feb; 356(1):165-78. PubMed ID: 16343535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A conserved G4 DNA binding domain in RecQ family helicases.
    Huber MD; Duquette ML; Shiels JC; Maizels N
    J Mol Biol; 2006 May; 358(4):1071-80. PubMed ID: 16530788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A central role for SSB in Escherichia coli RecQ DNA helicase function.
    Shereda RD; Bernstein DA; Keck JL
    J Biol Chem; 2007 Jun; 282(26):19247-58. PubMed ID: 17483090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the structural basis of RecQ helicase function.
    Vindigni A; Marino F; Gileadi O
    Biophys Chem; 2010 Jul; 149(3):67-77. PubMed ID: 20392558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation.
    Cahoon LA; Manthei KA; Rotman E; Keck JL; Seifert HS
    J Bacteriol; 2013 May; 195(10):2255-61. PubMed ID: 23475972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and function of the regulatory HRDC domain from human Bloom syndrome protein.
    Kim YM; Choi BS
    Nucleic Acids Res; 2010 Nov; 38(21):7764-77. PubMed ID: 20639533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling DNA-binding and ATP hydrolysis in Escherichia coli RecQ: role of a highly conserved aromatic-rich sequence.
    Zittel MC; Keck JL
    Nucleic Acids Res; 2005; 33(22):6982-91. PubMed ID: 16340008
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB's C terminus.
    Shereda RD; Reiter NJ; Butcher SE; Keck JL
    J Mol Biol; 2009 Feb; 386(3):612-25. PubMed ID: 19150358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and function of 2,3-dimethylmalate lyase, a PEP mutase/isocitrate lyase superfamily member.
    Narayanan B; Niu W; Joosten HJ; Li Z; Kuipers RK; Schaap PJ; Dunaway-Mariano D; Herzberg O
    J Mol Biol; 2009 Feb; 386(2):486-503. PubMed ID: 19133276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs.
    Assenmacher N; Wenig K; Lammens A; Hopfner KP
    J Mol Biol; 2006 Jan; 355(4):675-83. PubMed ID: 16309703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the catalytic domain of Japanese encephalitis virus NS3 helicase/nucleoside triphosphatase at a resolution of 1.8 A.
    Yamashita T; Unno H; Mori Y; Tani H; Moriishi K; Takamizawa A; Agoh M; Tsukihara T; Matsuura Y
    Virology; 2008 Apr; 373(2):426-36. PubMed ID: 18201743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.