BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16084494)

  • 1. Design, engineering, and characterization of zinc finger nucleases.
    Mani M; Kandavelou K; Dy FJ; Durai S; Chandrasegaran S
    Biochem Biophys Res Commun; 2005 Sep; 335(2):447-57. PubMed ID: 16084494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Custom-designed zinc finger nucleases: what is next?
    Wu J; Kandavelou K; Chandrasegaran S
    Cell Mol Life Sci; 2007 Nov; 64(22):2933-44. PubMed ID: 17763826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous screening and validation of effective zinc finger nucleases in yeast.
    Wang L; Lin J; Zhang T; Xu K; Ren C; Zhang Z
    PLoS One; 2013; 8(5):e64687. PubMed ID: 23741369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adding fingers to an engineered zinc finger nuclease can reduce activity.
    Shimizu Y; Şöllü C; Meckler JF; Adriaenssens A; Zykovich A; Cathomen T; Segal DJ
    Biochemistry; 2011 Jun; 50(22):5033-41. PubMed ID: 21528840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency modification of plant genes using engineered zinc-finger nucleases.
    Townsend JA; Wright DA; Winfrey RJ; Fu F; Maeder ML; Joung JK; Voytas DF
    Nature; 2009 May; 459(7245):442-5. PubMed ID: 19404258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins.
    Gaj T; Guo J; Kato Y; Sirk SJ; Barbas CF
    Nat Methods; 2012 Jul; 9(8):805-7. PubMed ID: 22751204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification.
    Maeder ML; Thibodeau-Beganny S; Osiak A; Wright DA; Anthony RM; Eichtinger M; Jiang T; Foley JE; Winfrey RJ; Townsend JA; Unger-Wallace E; Sander JD; Müller-Lerch F; Fu F; Pearlberg J; Göbel C; Dassie JP; Pruett-Miller SM; Porteus MH; Sgroi DC; Iafrate AJ; Dobbs D; McCray PB; Cathomen T; Voytas DF; Joung JK
    Mol Cell; 2008 Jul; 31(2):294-301. PubMed ID: 18657511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nontransgenic genome modification in plant cells.
    Marton I; Zuker A; Shklarman E; Zeevi V; Tovkach A; Roffe S; Ovadis M; Tzfira T; Vainstein A
    Plant Physiol; 2010 Nov; 154(3):1079-87. PubMed ID: 20876340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection.
    Pattanayak V; Ramirez CL; Joung JK; Liu DR
    Nat Methods; 2011 Aug; 8(9):765-70. PubMed ID: 21822273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity.
    Händel EM; Alwin S; Cathomen T
    Mol Ther; 2009 Jan; 17(1):104-11. PubMed ID: 19002164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays.
    Maeder ML; Thibodeau-Beganny S; Sander JD; Voytas DF; Joung JK
    Nat Protoc; 2009; 4(10):1471-501. PubMed ID: 19798082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the Repertoire of Target Sites for Zinc Finger Nuclease-mediated Genome Modification.
    Wilson KA; McEwen AE; Pruett-Miller SM; Zhang J; Kildebeck EJ; Porteus MH
    Mol Ther Nucleic Acids; 2013 Apr; 2(4):e88. PubMed ID: 23632390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase.
    Gersbach CA; Gaj T; Gordley RM; Mercer AC; Barbas CF
    Nucleic Acids Res; 2011 Sep; 39(17):7868-78. PubMed ID: 21653554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient detection, quantification and enrichment of subtle allelic alterations.
    Chen J; Zhang X; Wang T; Li Z; Guan G; Hong Y
    DNA Res; 2012 Oct; 19(5):423-33. PubMed ID: 23075543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knockout punches with a fistful of zinc fingers.
    Wilson JH
    Proc Natl Acad Sci U S A; 2008 Apr; 105(15):5653-4. PubMed ID: 18401029
    [No Abstract]   [Full Text] [Related]  

  • 16. Pre-clinical modeling of CCR5 knockout in human hematopoietic stem cells by zinc finger nucleases using humanized mice.
    Hofer U; Henley JE; Exline CM; Mulhern O; Lopez E; Cannon PM
    J Infect Dis; 2013 Nov; 208 Suppl 2(Suppl 2):S160-4. PubMed ID: 24151324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The discovery of zinc fingers and their applications in gene regulation and genome manipulation.
    Klug A
    Annu Rev Biochem; 2010; 79():213-31. PubMed ID: 20192761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted manipulation of mammalian genomes using designed zinc finger nucleases.
    Kandavelou K; Ramalingam S; London V; Mani M; Wu J; Alexeev V; Civin CI; Chandrasegaran S
    Biochem Biophys Res Commun; 2009 Oct; 388(1):56-61. PubMed ID: 19635463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells.
    Durai S; Mani M; Kandavelou K; Wu J; Porteus MH; Chandrasegaran S
    Nucleic Acids Res; 2005; 33(18):5978-90. PubMed ID: 16251401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants.
    Das S; Kwon M; Kim JY
    Front Plant Sci; 2024; 15():1279738. PubMed ID: 38450402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.