BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16085097)

  • 1. Absolute measurement of ultrasonic backscatter from single microbubbles.
    Sboros V; Pye SD; Macdonald CA; Gomatam J; Moran CM; McDicken WN
    Ultrasound Med Biol; 2005 Aug; 31(8):1063-72. PubMed ID: 16085097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro study of a microbubble contrast agent using a clinical ultrasound imaging system.
    Sboros V; Moran CM; Pye SD; McDicken WN
    Phys Med Biol; 2004 Jan; 49(1):159-73. PubMed ID: 14971779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single microbubble response using pulse sequences: initial results.
    Thomas DH; Butler MB; Anderson T; Steel R; Pye SD; Poland M; Brock-Fisher T; McDicken WN; Sboros V
    Ultrasound Med Biol; 2009 Jan; 35(1):112-9. PubMed ID: 18845380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The behaviour of individual contrast agent microbubbles.
    Sboros V; Moran CM; Pye SD; McDicken WN
    Ultrasound Med Biol; 2003 May; 29(5):687-94. PubMed ID: 12754068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimising phase and amplitude modulation schemes for imaging microbubble contrast agents at low acoustic power.
    Eckersley RJ; Chin CT; Burns PN
    Ultrasound Med Biol; 2005 Feb; 31(2):213-9. PubMed ID: 15708461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined optical and acoustical detection of single microbubble dynamics.
    Sijl J; Vos HJ; Rozendal T; de Jong N; Lohse D; Versluis M
    J Acoust Soc Am; 2011 Nov; 130(5):3271-81. PubMed ID: 22087999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro characterization of the subharmonic ultrasound signal from Definity microbubbles at high frequencies.
    Cheung K; Couture O; Bevan PD; Cherin E; Williams R; Burns PN; Foster FS
    Phys Med Biol; 2008 Mar; 53(5):1209-23. PubMed ID: 18296758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic characterization of the nonlinear properties of contrast microbubbles.
    Shi WT; Forsberg F
    Ultrasound Med Biol; 2000 Jan; 26(1):93-104. PubMed ID: 10687797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic sizing of an ultrasound contrast agent.
    Maresca D; Emmer M; van Neer PL; Vos HJ; Versluis M; Muller M; de Jong N; van der Steen AF
    Ultrasound Med Biol; 2010 Oct; 36(10):1713-21. PubMed ID: 20850027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the limitations of ultrasonic backscatter measurements from microbubble populations.
    Sboros V; Ramnarine KV; Moran CM; Pye SD; McDicken WN
    Phys Med Biol; 2002 Dec; 47(23):4287-99. PubMed ID: 12502050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new transducer receive transfer function calibration method: application to microbubble backscattering cross-section measurements at high frequency.
    Sprague MR; Chérin E; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1159-68. PubMed ID: 21693398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfoam formation in a capillary.
    Kotopoulis S; Postema M
    Ultrasonics; 2010 Feb; 50(2):260-8. PubMed ID: 19875143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave scattering from encapsulated microbubbles subject to high-frequency ultrasound: contribution of higher-order scattering modes.
    Chen J; Hunter KS; Shandas R
    J Acoust Soc Am; 2009 Oct; 126(4):1766-75. PubMed ID: 19813791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency relationships for ultrasonic activation of free microbubbles, encapsulated microbubbles, and gas-filled micropores.
    Miller DL
    J Acoust Soc Am; 1998 Oct; 104(4):2498-505. PubMed ID: 10491710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the suitability of broadband attenuation measurement for characterizing contrast microbubbles.
    Chatterjee D; Sarkar K; Jain P; Schreppler NE
    Ultrasound Med Biol; 2005 Jun; 31(6):781-6. PubMed ID: 15936494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the usefulness of the mechanical index displayed on clinical ultrasound scanners for predicting contrast microbubble destruction.
    Forsberg F; Shi WT; Merritt CR; Dai Q; Solcova M; Goldberg BB
    J Ultrasound Med; 2005 Apr; 24(4):443-50. PubMed ID: 15784762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of in situ exposure to ultrasound: an acoustical attenuation method.
    Preston RC; Shaw A; Zeqiri B
    Ultrasound Med Biol; 1991; 17(4):317-32. PubMed ID: 1949344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic and kinetic behaviour of definity in mice exposed to high frequency ultrasound.
    Stapleton S; Goodman H; Zhou YQ; Cherin E; Henkelman RM; Burns PN; Foster FS
    Ultrasound Med Biol; 2009 Feb; 35(2):296-307. PubMed ID: 18950930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of a bistatic scattering substitution technique for calibration of focused receivers.
    Rich KT; Mast TD
    J Acoust Soc Am; 2015 Nov; 138(5):EL469-73. PubMed ID: 26627816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures.
    Emmer M; Vos HJ; Goertz DE; van Wamel A; Versluis M; de Jong N
    Ultrasound Med Biol; 2009 Jan; 35(1):102-11. PubMed ID: 18829153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.