BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1608542)

  • 1. Anatomical evidence for segregated input from the upper cervical spinal cord to functionally distinct regions of the periaqueductal gray region of the cat.
    Keay KA; Bandler R
    Neurosci Lett; 1992 May; 139(2):143-8. PubMed ID: 1608542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep and superficial noxious stimulation increases Fos-like immunoreactivity in different regions of the midbrain periaqueductal grey of the rat.
    Keay KA; Bandler R
    Neurosci Lett; 1993 May; 154(1-2):23-6. PubMed ID: 8361643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal afferents to functionally distinct periaqueductal gray columns in the rat: an anterograde and retrograde tracing study.
    Keay KA; Feil K; Gordon BD; Herbert H; Bandler R
    J Comp Neurol; 1997 Aug; 385(2):207-29. PubMed ID: 9268124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmental and laminar organization of the spinal neurons projecting to the periaqueductal gray (PAG) in the cat suggests the existence of at least five separate clusters of spino-PAG neurons.
    Mouton LJ; Holstege G
    J Comp Neurol; 2000 Dec; 428(3):389-410. PubMed ID: 11074442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ventrolateral upper cervical cell group in cat projects to all rostrocaudal levels of the periaqueductal gray matter.
    Mouton LJ; Eggens-Meijer E; Klop EM
    Brain Res; 2009 Dec; 1300():79-96. PubMed ID: 19747465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flight and immobility evoked by excitatory amino acid microinjection within distinct parts of the subtentorial midbrain periaqueductal gray of the cat.
    Zhang SP; Bandler R; Carrive P
    Brain Res; 1990 Jun; 520(1-2):73-82. PubMed ID: 2207648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The periaqueductal gray in the cat projects to lamina VIII and the medial part of lamina VII throughout the length of the spinal cord.
    Mouton LJ; Holstege G
    Exp Brain Res; 1994; 101(2):253-64. PubMed ID: 7531157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamina I-periaqueductal gray (PAG) projections represent only a limited part of the total spinal and caudal medullary input to the PAG in the cat.
    Mouton LJ; Klop E; Holstege G
    Brain Res Bull; 2001 Jan; 54(2):167-74. PubMed ID: 11275406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocal connections between the medial preoptic area and the midbrain periaqueductal gray in rat: a WGA-HRP and PHA-L study.
    Rizvi TA; Ennis M; Shipley MT
    J Comp Neurol; 1992 Jan; 315(1):1-15. PubMed ID: 1371779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The termination of spinomesencephalic fibers in cat. An experimental anatomical study.
    Björkeland M; Boivie J
    Anat Embryol (Berl); 1984; 170(3):265-77. PubMed ID: 6441483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Somatosensory projection to the mesencephalon: an anatomical study in the monkey.
    Wiberg M; Westman J; Blomqvist A
    J Comp Neurol; 1987 Oct; 264(1):92-117. PubMed ID: 2445793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study.
    Carrive P; Bandler R
    Brain Res; 1991 Feb; 541(2):206-15. PubMed ID: 2054638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Midbrain influences on ventrolateral medullo-spinal neurones in the rat.
    Lovick TA
    Exp Brain Res; 1992; 90(1):147-52. PubMed ID: 1521603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of the efferent projections from the spinal cervical enlargement to the parabrachial area and periaqueductal gray: a PHA-L study in the rat.
    Bernard JF; Dallel R; Raboisson P; Villanueva L; Le Bars D
    J Comp Neurol; 1995 Mar; 353(4):480-505. PubMed ID: 7759612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray.
    Vanderhorst VG; Mouton LJ; Blok BF; Holstege G
    J Comp Neurol; 1996 Dec; 376(3):361-85. PubMed ID: 8956105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: limbic and non-limbic components.
    Cowie RJ; Holstege G
    J Comp Neurol; 1992 May; 319(4):536-59. PubMed ID: 1619044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reciprocal connections between the periaqueductal gray matter and other somatosensory regions of the cat midbrain: a possible mechanism of pain inhibition.
    Wiberg M
    Ups J Med Sci; 1992; 97(1):37-47. PubMed ID: 1523733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral cervical nucleus projections to periaqueductal gray matter in cat.
    Mouton LJ; Klop EM; Broman J; Zhang M; Holstege G
    J Comp Neurol; 2004 Apr; 471(4):434-45. PubMed ID: 15022262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chemical and electrical stimulation of the midbrain on feline T2-T6 spinoreticular and spinal cell activity evoked by cardiopulmonary afferent input.
    Chandler MJ; Garrison DW; Brennan TJ; Foreman RD
    Brain Res; 1989 Sep; 496(1-2):148-64. PubMed ID: 2804627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.