These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16085679)

  • 1. Measuring surface potential components necessary for transmembrane current computation using microfabricated arrays.
    Wiley JJ; Ideker RE; Smith WM; Pollard AE
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2468-77. PubMed ID: 16085679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor spacing affects the tissue impedance spectra of rabbit ventricular epicardium.
    Waits CM; Barr RC; Pollard AE
    Am J Physiol Heart Circ Physiol; 2014 Jun; 306(12):H1660-8. PubMed ID: 24778170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac microimpedance measurement in two-dimensional models using multisite interstitial stimulation.
    Pollard AE; Barr RC
    Am J Physiol Heart Circ Physiol; 2006 May; 290(5):H1976-87. PubMed ID: 16373582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial methods of epicardial activation time determination in normal hearts.
    Punske BB; Ni Q; Lux RL; MacLeod RS; Ershler PR; Dustman TJ; Allison MJ; Taccardi B
    Ann Biomed Eng; 2003; 31(7):781-92. PubMed ID: 12971611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrode systems for measuring cardiac impedances using optical transmembrane potential sensors and interstitial electrodes--theoretical design.
    Barr RC; Plonsey R
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):925-34. PubMed ID: 12892320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved spatial resolution and electrogram wave direction independence with the use of an orthogonal electrode configuration.
    Thompson NC; Stinnett-Donnelly J; Habel N; Benson B; Bates JH; Sobel BE; Spector PS
    J Clin Monit Comput; 2014 Apr; 28(2):157-63. PubMed ID: 24068576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the cut surface during electrical stimulation of a cardiac wedge preparation.
    Roth BJ; Patel SG; Murdick RA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1187-90. PubMed ID: 16761846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous mapping of endocardium and epicardium from multielectrode intrachamber and intravenous catheters: a computer simulation-based validation.
    Baysoy E; Cunedioğlu U; Yilmaz B
    J Electrocardiol; 2010; 43(1):56-62. PubMed ID: 19539953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Region specific modeling of cardiac muscle: comparison of simulated and experimental potentials.
    Muzikant AL; Hsu EW; Wolf PD; Henriquez CS
    Ann Biomed Eng; 2002; 30(7):867-83. PubMed ID: 12398418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and validation of a plunge electrode array for three-dimensional determination of conductivity in the heart.
    Hooks DA; Trew ML
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):626-35. PubMed ID: 18269998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility of cardiac microimpedance measurement using multisite interstitial stimulation.
    Pollard AE; Smith WM; Barr RC
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2402-11. PubMed ID: 15284069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral analysis of activation time sequences.
    Langston MA; Pieper CF; Pacifico A
    Pacing Clin Electrophysiol; 1994 Jul; 17(7):1288-99. PubMed ID: 7937234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity- and effort-gain analysis: multilead ECG electrode array selection for activation time imaging.
    Hintermüller C; Seger M; Pfeifer B; Fischer G; Modre R; Tilg B
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2055-66. PubMed ID: 17019870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical model of extracellular potentials in a tissue slab with a finite bath.
    Tranquillo JV; Burwell DO; Henriquez CS
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):334-8. PubMed ID: 15709672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrogram fractionation: the relationship between spatiotemporal variation of tissue excitation and electrode spatial resolution.
    Correa de Sa DD; Thompson N; Stinnett-Donnelly J; Znojkiewicz P; Habel N; Müller JG; Bates JH; Buzas JS; Spector PS
    Circ Arrhythm Electrophysiol; 2011 Dec; 4(6):909-16. PubMed ID: 21984446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of electrode configurations for measuring cardiac tissue conductivities and fibre rotation.
    Johnston BM; Johnston PR; Kilpatrick D
    Ann Biomed Eng; 2006 Jun; 34(6):986-96. PubMed ID: 16783654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of electrode size and spacing on the resolution of intracardiac electrograms.
    Stinnett-Donnelly JM; Thompson N; Habel N; Petrov-Kondratov V; Correa de Sa DD; Bates JH; Spector PS
    Coron Artery Dis; 2012 Mar; 23(2):126-32. PubMed ID: 22258280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear electrode arrays for stimulation and recording within cardiac tissue space constants.
    Pollard AE; Ellis CD; Smith WM
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1408-14. PubMed ID: 18390332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multisite interstitial stimulation for cardiac micro-impedance measurements.
    Pollard AE; Barr RC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1572-5. PubMed ID: 17946050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.