These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16085768)

  • 1. Actinic light-energy dependence of proton release from bacteriorhodopsin.
    Tóth-Boconádi R; Taneva SG; Keszthelyi L
    Biophys J; 2005 Oct; 89(4):2605-9. PubMed ID: 16085768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The assignment of the different infrared continuum absorbance changes observed in the 3000-1800-cm(-1) region during the bacteriorhodopsin photocycle.
    Garczarek F; Wang J; El-Sayed MA; Gerwert K
    Biophys J; 2004 Oct; 87(4):2676-82. PubMed ID: 15298873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. External electric control of the proton pumping in bacteriorhodopsin.
    Kietis BP; Saudargas P; Vàró G; Valkunas L
    Eur Biophys J; 2007 Mar; 36(3):199-211. PubMed ID: 17186234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycocardiolipin modulates the surface interaction of the proton pumped by bacteriorhodopsin in purple membrane preparations.
    Corcelli A; Lobasso S; Saponetti MS; Leopold A; Dencher NA
    Biochim Biophys Acta; 2007 Sep; 1768(9):2157-63. PubMed ID: 17669358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R
    J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of lipid environment in purple membrane on bacteriorhodopsin.
    Hu K; Sun Y; Chen D; Zhang Y
    J Photochem Photobiol B; 2000 Nov; 58(2-3):163-9. PubMed ID: 11233645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ability of actinic light to modify the bacteriorhodopsin photocycle. Heterogeneity and/or photocooperativity?
    Shrager RI; Hendler RW; Bose S
    Eur J Biochem; 1995 May; 229(3):589-95. PubMed ID: 7758451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible inhibition of proton release activity and the anesthetic-induced acid-base equilibrium between the 480 and 570 nm forms of bacteriorhodopsin.
    Boucher F; Taneva SG; Elouatik S; Déry M; Messaoudi S; Harvey-Girard E; Beaudoin N
    Biophys J; 1996 Feb; 70(2):948-61. PubMed ID: 8789112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of low-frequency local fluctuation motions in the transmembrane B and C alpha-helices of bacteriorhodopsin, to facilitate efficient proton uptake from the cytoplasmic surface, as revealed by site-directed solid-state 13C NMR.
    Kira A; Tanio M; Tuzi S; Saitô H
    Eur Biophys J; 2004 Nov; 33(7):580-8. PubMed ID: 15133647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the bacteriorhodopsin photocycle and proton pumping in whole cells of Halobacterium salinarium.
    Joshi MK; Bose S; Hendler RW
    Biochemistry; 1999 Jul; 38(27):8786-93. PubMed ID: 10393554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity of bacteriorhodopsin structural changes triggered by chromophore removal and light-driven proton transport.
    Ludlam GJ; Rothschild KJ
    FEBS Lett; 1997 May; 407(3):285-8. PubMed ID: 9175869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton transfer reactions in native and deionized bacteriorhodopsin upon delipidation and monomerization.
    Heyes CD; El-Sayed MA
    Biophys J; 2003 Jul; 85(1):426-34. PubMed ID: 12829497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton transfer reactions across bacteriorhodopsin and along the membrane.
    Heberle J
    Biochim Biophys Acta; 2000 May; 1458(1):135-47. PubMed ID: 10812029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriorhodopsin. Correspondence of the photocycle and electrogenesis with sites of the molecule.
    Khitrina LV; Ksenofontov AL
    Biochemistry (Mosc); 2004 Dec; 69(12):1407-9. PubMed ID: 15627399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriorhodopsin analog regenerated with 13-desmethyl-13-iodoretinal.
    Hiraki K; Hamanaka T; Zheng XG; Shinada T; Kim JM; Yoshihara K; Kito Y
    Biophys J; 2002 Dec; 83(6):3460-9. PubMed ID: 12496112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamentals of photoelectric effects in molecular electronic thin film devices: applications to bacteriorhodopsin-based devices.
    Hong FT
    Biosystems; 1995; 35(2-3):117-21. PubMed ID: 7488699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments.
    Rousso I; Gat Y; Lewis A; Sheves M; Ottolenghi M
    Biophys J; 1998 Jul; 75(1):413-7. PubMed ID: 9649399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH dependence of light-induced proton release by bacteriorhodopsin.
    Kono M; Misra S; Ebrey TG
    FEBS Lett; 1993 Sep; 331(1-2):31-4. PubMed ID: 8405405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipidic cubic phase crystallization of bacteriorhodopsin and cryotrapping of intermediates: towards resolving a revolving photocycle.
    Pebay-Peyroula E; Neutze R; Landau EM
    Biochim Biophys Acta; 2000 Aug; 1460(1):119-32. PubMed ID: 10984595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.