BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 16085837)

  • 1. Host species-specific metabolic fingerprint database for enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters.
    Ahmed W; Neller R; Katouli M
    Appl Environ Microbiol; 2005 Aug; 71(8):4461-8. PubMed ID: 16085837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the efficacy of an existing versus a locally developed metabolic fingerprint database to identify non-point sources of faecal contamination in a coastal lake.
    Ahmed W; Tucker J; Harper J; Neller R; Katouli M
    Water Res; 2006 Jul; 40(12):2339-48. PubMed ID: 16762388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sourcing faecal pollution: a combination of library-dependent and library-independent methods to identify human faecal pollution in non-sewered catchments.
    Ahmed W; Stewart J; Gardner T; Powell D; Brooks P; Sullivan D; Tindale N
    Water Res; 2007 Aug; 41(16):3771-9. PubMed ID: 17482658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of septic system failure determined by a bacterial biochemical fingerprinting method.
    Ahmed W; Neller R; Katouli M
    J Appl Microbiol; 2005; 98(4):910-20. PubMed ID: 15752338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of virulence genes in Escherichia coli of an existing metabolic fingerprint database to predict the sources of pathogenic E. coli in surface waters.
    Ahmed W; Tucker J; Bettelheim KA; Neller R; Katouli M
    Water Res; 2007 Aug; 41(16):3785-91. PubMed ID: 17289107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Population similarity of enterococci and Escherichia coil in surface waters: A predictive tool to trace the sources of fecal contamination.
    Ahmed W; Neller R; Katouli M
    J Water Health; 2006 Sep; 4(3):347-56. PubMed ID: 17036842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers--is it feasible?
    Wang D; Farnleitner AH; Field KG; Green HC; Shanks OC; Boehm AB
    Water Res; 2013 Nov; 47(18):6849-61. PubMed ID: 23890872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches.
    Cloutier DD; McLellan SL
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic variations of enterococci in surface waters: analysis of biochemical fingerprinting data from multi-catchments.
    Ahmed W; Katouli M
    J Appl Microbiol; 2008 Aug; 105(2):452-8. PubMed ID: 18298525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viability and stability of Escherichia coli and enterococci populations in fecal samples upon freezing.
    Masters N; Christie M; Stratton H; Katouli M
    Can J Microbiol; 2015 Jul; 61(7):495-501. PubMed ID: 26053765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fidelity of bacterial source tracking: Escherichia coli vs Enterococcus spp and minimizing assignment of isolates from nonlibrary sources.
    Hassan WM; Ellender RD; Wang SY
    J Appl Microbiol; 2007 Feb; 102(2):591-8. PubMed ID: 17241366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces.
    Silkie SS; Nelson KL
    Water Res; 2009 Nov; 43(19):4860-71. PubMed ID: 19765792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic diversity of Escherichia coli isolated from urban rivers and beach water.
    McLellan SL
    Appl Environ Microbiol; 2004 Aug; 70(8):4658-65. PubMed ID: 15294799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying fecal sources in a selected catchment reach using multiple source-tracking tools.
    Vogel JR; Stoeckel DM; Lamendella R; Zelt RB; Santo Domingo JW; Walker SR; Oerther DB
    J Environ Qual; 2007; 36(3):718-29. PubMed ID: 17412907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abundance and characteristics of the recreational water quality indicator bacteria Escherichia coli and enterococci in gull faeces.
    Fogarty LR; Haack SK; Wolcott MJ; Whitman RL
    J Appl Microbiol; 2003; 94(5):865-78. PubMed ID: 12694452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence.
    Stoeckel DM; Stelzer EA; Stogner RW; Mau DP
    Water Res; 2011 May; 45(10):3225-44. PubMed ID: 21513966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the source of fecal contamination in recreational waters.
    Meyer KJ; Appletoft CM; Schwemm AK; Uzoigwe JC; Brown EJ
    J Environ Health; 2005; 68(1):25-30. PubMed ID: 16121484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers.
    Ahmed W; Powell D; Goonetilleke A; Gardner T
    Water Sci Technol; 2008; 58(3):579-86. PubMed ID: 18725724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay.
    McQuaig SM; Scott TM; Harwood VJ; Farrah SR; Lukasik JO
    Appl Environ Microbiol; 2006 Dec; 72(12):7567-74. PubMed ID: 16997988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial source tracking by DNA sequence analysis of the Escherichia coli malate dehydrogenase gene.
    Ivanetich KM; Hsu PH; Wunderlich KM; Messenger E; Walkup WG; Scott TM; Lukasik J; Davis J
    J Microbiol Methods; 2006 Dec; 67(3):507-26. PubMed ID: 16973226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.