These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 16085837)
1. Host species-specific metabolic fingerprint database for enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters. Ahmed W; Neller R; Katouli M Appl Environ Microbiol; 2005 Aug; 71(8):4461-8. PubMed ID: 16085837 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the efficacy of an existing versus a locally developed metabolic fingerprint database to identify non-point sources of faecal contamination in a coastal lake. Ahmed W; Tucker J; Harper J; Neller R; Katouli M Water Res; 2006 Jul; 40(12):2339-48. PubMed ID: 16762388 [TBL] [Abstract][Full Text] [Related]
3. Sourcing faecal pollution: a combination of library-dependent and library-independent methods to identify human faecal pollution in non-sewered catchments. Ahmed W; Stewart J; Gardner T; Powell D; Brooks P; Sullivan D; Tindale N Water Res; 2007 Aug; 41(16):3771-9. PubMed ID: 17482658 [TBL] [Abstract][Full Text] [Related]
4. Evidence of septic system failure determined by a bacterial biochemical fingerprinting method. Ahmed W; Neller R; Katouli M J Appl Microbiol; 2005; 98(4):910-20. PubMed ID: 15752338 [TBL] [Abstract][Full Text] [Related]
5. Detection of virulence genes in Escherichia coli of an existing metabolic fingerprint database to predict the sources of pathogenic E. coli in surface waters. Ahmed W; Tucker J; Bettelheim KA; Neller R; Katouli M Water Res; 2007 Aug; 41(16):3785-91. PubMed ID: 17289107 [TBL] [Abstract][Full Text] [Related]
6. Population similarity of enterococci and Escherichia coil in surface waters: A predictive tool to trace the sources of fecal contamination. Ahmed W; Neller R; Katouli M J Water Health; 2006 Sep; 4(3):347-56. PubMed ID: 17036842 [TBL] [Abstract][Full Text] [Related]
7. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers--is it feasible? Wang D; Farnleitner AH; Field KG; Green HC; Shanks OC; Boehm AB Water Res; 2013 Nov; 47(18):6849-61. PubMed ID: 23890872 [TBL] [Abstract][Full Text] [Related]
8. Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches. Cloutier DD; McLellan SL Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27940538 [TBL] [Abstract][Full Text] [Related]
9. Phenotypic variations of enterococci in surface waters: analysis of biochemical fingerprinting data from multi-catchments. Ahmed W; Katouli M J Appl Microbiol; 2008 Aug; 105(2):452-8. PubMed ID: 18298525 [TBL] [Abstract][Full Text] [Related]
10. Viability and stability of Escherichia coli and enterococci populations in fecal samples upon freezing. Masters N; Christie M; Stratton H; Katouli M Can J Microbiol; 2015 Jul; 61(7):495-501. PubMed ID: 26053765 [TBL] [Abstract][Full Text] [Related]
11. Fidelity of bacterial source tracking: Escherichia coli vs Enterococcus spp and minimizing assignment of isolates from nonlibrary sources. Hassan WM; Ellender RD; Wang SY J Appl Microbiol; 2007 Feb; 102(2):591-8. PubMed ID: 17241366 [TBL] [Abstract][Full Text] [Related]
12. Concentrations of host-specific and generic fecal markers measured by quantitative PCR in raw sewage and fresh animal feces. Silkie SS; Nelson KL Water Res; 2009 Nov; 43(19):4860-71. PubMed ID: 19765792 [TBL] [Abstract][Full Text] [Related]
13. Genetic diversity of Escherichia coli isolated from urban rivers and beach water. McLellan SL Appl Environ Microbiol; 2004 Aug; 70(8):4658-65. PubMed ID: 15294799 [TBL] [Abstract][Full Text] [Related]
14. Identifying fecal sources in a selected catchment reach using multiple source-tracking tools. Vogel JR; Stoeckel DM; Lamendella R; Zelt RB; Santo Domingo JW; Walker SR; Oerther DB J Environ Qual; 2007; 36(3):718-29. PubMed ID: 17412907 [TBL] [Abstract][Full Text] [Related]
15. Abundance and characteristics of the recreational water quality indicator bacteria Escherichia coli and enterococci in gull faeces. Fogarty LR; Haack SK; Wolcott MJ; Whitman RL J Appl Microbiol; 2003; 94(5):865-78. PubMed ID: 12694452 [TBL] [Abstract][Full Text] [Related]
16. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence. Stoeckel DM; Stelzer EA; Stogner RW; Mau DP Water Res; 2011 May; 45(10):3225-44. PubMed ID: 21513966 [TBL] [Abstract][Full Text] [Related]
17. Determining the source of fecal contamination in recreational waters. Meyer KJ; Appletoft CM; Schwemm AK; Uzoigwe JC; Brown EJ J Environ Health; 2005; 68(1):25-30. PubMed ID: 16121484 [TBL] [Abstract][Full Text] [Related]
18. Detection and source identification of faecal pollution in non-sewered catchment by means of host-specific molecular markers. Ahmed W; Powell D; Goonetilleke A; Gardner T Water Sci Technol; 2008; 58(3):579-86. PubMed ID: 18725724 [TBL] [Abstract][Full Text] [Related]
19. Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay. McQuaig SM; Scott TM; Harwood VJ; Farrah SR; Lukasik JO Appl Environ Microbiol; 2006 Dec; 72(12):7567-74. PubMed ID: 16997988 [TBL] [Abstract][Full Text] [Related]
20. Microbial source tracking by DNA sequence analysis of the Escherichia coli malate dehydrogenase gene. Ivanetich KM; Hsu PH; Wunderlich KM; Messenger E; Walkup WG; Scott TM; Lukasik J; Davis J J Microbiol Methods; 2006 Dec; 67(3):507-26. PubMed ID: 16973226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]