These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16085840)

  • 1. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1.
    Jiao Y; Kappler A; Croal LR; Newman DK
    Appl Environ Microbiol; 2005 Aug; 71(8):4487-96. PubMed ID: 16085840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototrophic Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 in organic and Fe(II)-rich conditions.
    Nikeleit V; Maisch M; Byrne JM; Harwood C; Kappler A; Bryce C
    Environ Microbiol; 2024 Mar; 26(3):e16608. PubMed ID: 38504412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
    Ehrenreich A; Widdel F
    Appl Environ Microbiol; 1994 Dec; 60(12):4517-26. PubMed ID: 7811087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic Redundancy in Iron and Manganese Transport in the Metabolically Versatile Bacterium Rhodopseudomonas palustris TIE-1.
    Singh R; Ranaivoarisoa TO; Gupta D; Bai W; Bose A
    Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32503905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation.
    Bryce C; Franz-Wachtel M; Nalpas NC; Miot J; Benzerara K; Byrne JM; Kleindienst S; Macek B; Kappler A
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1.
    Jiao Y; Newman DK
    J Bacteriol; 2007 Mar; 189(5):1765-73. PubMed ID: 17189359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
    Kato S; Ohkuma M
    Microbiol Spectr; 2021 Sep; 9(1):e0016121. PubMed ID: 34431720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE-1.
    Eickhoff M; Birgel D; Talbot HM; Peckmann J; Kappler A
    Geobiology; 2013 May; 11(3):268-78. PubMed ID: 23480293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17.
    Schott J; Griffin BM; Schink B
    Microbiology (Reading); 2010 Aug; 156(Pt 8):2428-2437. PubMed ID: 20447994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.
    Weber KA; Pollock J; Cole KA; O'Connor SM; Achenbach LA; Coates JD
    Appl Environ Microbiol; 2006 Jan; 72(1):686-94. PubMed ID: 16391108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments.
    Hegler F; Posth NR; Jiang J; Kappler A
    FEMS Microbiol Ecol; 2008 Nov; 66(2):250-60. PubMed ID: 18811650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces.
    Zhang D; Yang H; Huang Z; Zhang W; Liu SJ
    Int J Syst Evol Microbiol; 2002 Nov; 52(Pt 6):2055-2060. PubMed ID: 12508868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial iron redox cycling in a circumneutral-pH groundwater seep.
    Blöthe M; Roden EE
    Appl Environ Microbiol; 2009 Jan; 75(2):468-73. PubMed ID: 19047399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electricity generation by Rhodopseudomonas palustris DX-1.
    Xing D; Zuo Y; Cheng S; Regan JM; Logan BE
    Environ Sci Technol; 2008 Jun; 42(11):4146-51. PubMed ID: 18589979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
    Haas NW; Jain A; Hying Z; Arif SJ; Niehaus TD; Gralnick JA; Fixen KR
    Appl Environ Microbiol; 2022 Aug; 88(15):e0097422. PubMed ID: 35862670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopseudomonas rhenobacensis sp. nov., a new nitrate-reducing purple non-sulfur bacterium.
    Hougardy A; Tindall BJ; Klemme JH
    Int J Syst Evol Microbiol; 2000 May; 50 Pt 3():985-992. PubMed ID: 10843036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrate-dependent [Fe(II)EDTA]2- oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor.
    Kumaraswamy R; Sjollema K; Kuenen G; van Loosdrecht M; Muyzer G
    Syst Appl Microbiol; 2006 Jun; 29(4):276-86. PubMed ID: 16682296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a "Geospirillum" sp. strain.
    Heising S; Richter L; Ludwig W; Schink B
    Arch Microbiol; 1999 Aug; 172(2):116-24. PubMed ID: 10415173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the phototrophic iron oxidation (pio) genes in Rhodopseudomonas palustris TIE-1 is mediated by the global regulator, FixK.
    Bose A; Newman DK
    Mol Microbiol; 2011 Jan; 79(1):63-75. PubMed ID: 21166894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria.
    Byrne JM; Klueglein N; Pearce C; Rosso KM; Appel E; Kappler A
    Science; 2015 Mar; 347(6229):1473-6. PubMed ID: 25814583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.