These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 16086143)

  • 1. Biasing the brain's attentional set: II. effects of selective intersensory attentional deployments on subsequent sensory processing.
    Foxe JJ; Simpson GV
    Exp Brain Res; 2005 Oct; 166(3-4):393-401. PubMed ID: 16086143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biasing the brain's attentional set: I. cue driven deployments of intersensory selective attention.
    Foxe JJ; Simpson GV; Ahlfors SP; Saron CD
    Exp Brain Res; 2005 Oct; 166(3-4):370-92. PubMed ID: 16086144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modality-dependent "what" and "where" preparatory processes in auditory and visual systems.
    Diaconescu AO; Alain C; McIntosh AR
    J Cogn Neurosci; 2011 Jul; 23(7):1609-23. PubMed ID: 20350168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The deployment of intersensory selective attention: a high-density electrical mapping study of the effects of theanine.
    Gomez-Ramirez M; Higgins BA; Rycroft JA; Owen GN; Mahoney J; Shpaner M; Foxe JJ
    Clin Neuropharmacol; 2007; 30(1):25-38. PubMed ID: 17272967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas.
    Mehta AD; Ulbert I; Schroeder CE
    Cereb Cortex; 2000 Apr; 10(4):343-58. PubMed ID: 10769247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERP correlates of anticipatory attention: spatial and non-spatial specificity and relation to subsequent selective attention.
    Dale CL; Simpson GV; Foxe JJ; Luks TL; Worden MS
    Exp Brain Res; 2008 Jun; 188(1):45-62. PubMed ID: 18347786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intersensory selective attention and temporal orienting operate in parallel and are instantiated in spatially distinct sensory and motor cortices.
    Pomper U; Keil J; Foxe JJ; Senkowski D
    Hum Brain Mapp; 2015 Aug; 36(8):3246-59. PubMed ID: 26032901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parieto-occipital approximately 10 Hz activity reflects anticipatory state of visual attention mechanisms.
    Foxe JJ; Simpson GV; Ahlfors SP
    Neuroreport; 1998 Dec; 9(17):3929-33. PubMed ID: 9875731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention-dependent suppression of distracter visual input can be cross-modally cued as indexed by anticipatory parieto-occipital alpha-band oscillations.
    Fu KM; Foxe JJ; Murray MM; Higgins BA; Javitt DC; Schroeder CE
    Brain Res Cogn Brain Res; 2001 Aug; 12(1):145-52. PubMed ID: 11489617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials.
    Correa A; Lupiáñez J; Madrid E; Tudela P
    Brain Res; 2006 Mar; 1076(1):116-28. PubMed ID: 16516173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.
    Kelly SP; Gomez-Ramirez M; Foxe JJ
    Eur J Neurosci; 2009 Dec; 30(11):2224-34. PubMed ID: 19930401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal orienting precedes intersensory attention and has opposing effects on early evoked brain activity.
    Keil J; Pomper U; Feuerbach N; Senkowski D
    Neuroimage; 2017 Mar; 148():230-239. PubMed ID: 28108395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modality shift effects mimic multisensory interactions: an event-related potential study.
    Gondan M; Vorberg D; Greenlee MW
    Exp Brain Res; 2007 Sep; 182(2):199-214. PubMed ID: 17562033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow fluctuations in attentional control of sensory cortex.
    Kam JW; Dao E; Farley J; Fitzpatrick K; Smallwood J; Schooler JW; Handy TC
    J Cogn Neurosci; 2011 Feb; 23(2):460-70. PubMed ID: 20146593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-modal and cross-modal spatial attention to auditory and visual stimuli. An event-related brain potential study.
    Teder-Sälejärvi WA; Münte TF; Sperlich F; Hillyard SA
    Brain Res Cogn Brain Res; 1999 Oct; 8(3):327-43. PubMed ID: 10556609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracking the voluntary control of auditory spatial attention with event-related brain potentials.
    Störmer VS; Green JJ; McDonald JJ
    Psychophysiology; 2009 Mar; 46(2):357-66. PubMed ID: 19170950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cueing effects on semantic and perceptual categorization: ERPs reveal differential effects of validity as a function of processing stage.
    Lai G; Mangels JA
    Neuropsychologia; 2007 May; 45(9):2038-50. PubMed ID: 17382975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can attention be directed to opposite locations in different modalities? An ERP study.
    Eimer M
    Clin Neurophysiol; 1999 Jul; 110(7):1252-9. PubMed ID: 10423190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective auditory attention in 3- to 5-year-old children: an event-related potential study.
    Sanders LD; Stevens C; Coch D; Neville HJ
    Neuropsychologia; 2006; 44(11):2126-38. PubMed ID: 16289144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.