These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 16086451)
1. Hexahydro-1,3,5-trinitro-1,3,5-triazine transformation by biologically reduced ferrihydrite: evolution of Fe mineralogy, surface area, and reaction rates. Williams AG; Gregory KB; Parkin GF; Scherer MM Environ Sci Technol; 2005 Jul; 39(14):5183-9. PubMed ID: 16086451 [TBL] [Abstract][Full Text] [Related]
2. Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Fe(II) bound to magnetite. Gregory KB; Larese-Casanova P; Parkin GF; Scherer MM Environ Sci Technol; 2004 Mar; 38(5):1408-14. PubMed ID: 15046341 [TBL] [Abstract][Full Text] [Related]
3. Microbially mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine by extracellular electron shuttling compounds. Kwon MJ; Finneran KT Appl Environ Microbiol; 2006 Sep; 72(9):5933-41. PubMed ID: 16957213 [TBL] [Abstract][Full Text] [Related]
4. Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material. Kwon MJ; O'Loughlin EJ; Antonopoulos DA; Finneran KT Chemosphere; 2011 Aug; 84(9):1223-30. PubMed ID: 21664641 [TBL] [Abstract][Full Text] [Related]
5. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions. Boparai HK; Comfort SD; Satapanajaru T; Szecsody JE; Grossl PR; Shea PJ Chemosphere; 2010 May; 79(8):865-72. PubMed ID: 20226494 [TBL] [Abstract][Full Text] [Related]
6. Arsenic mobilization through microbially mediated deflocculation of ferrihydrite. Tadanier CJ; Schreiber ME; Roller JW Environ Sci Technol; 2005 May; 39(9):3061-8. PubMed ID: 15926553 [TBL] [Abstract][Full Text] [Related]
7. Electron shuttle-mediated biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine adsorbed to granular activated carbon. Millerick K; Drew SR; Finneran KT Environ Sci Technol; 2013 Aug; 47(15):8743-50. PubMed ID: 23837558 [TBL] [Abstract][Full Text] [Related]
8. Role of organically complexed iron(II) species in the reductive transformation of RDX in anoxic environments. Kim D; Strathmann TJ Environ Sci Technol; 2007 Feb; 41(4):1257-64. PubMed ID: 17593728 [TBL] [Abstract][Full Text] [Related]
9. Competing Fe (II)-induced mineralization pathways of ferrihydrite. Hansel CM; Benner SG; Fendorf S Environ Sci Technol; 2005 Sep; 39(18):7147-53. PubMed ID: 16201641 [TBL] [Abstract][Full Text] [Related]
10. Mineralogy and buffer identity effects on RDX kinetics and intermediates during reaction with natural and synthetic magnetite. Strehlau JH; Berens MJ; Arnold WA Chemosphere; 2018 Dec; 213():602-609. PubMed ID: 30292004 [TBL] [Abstract][Full Text] [Related]
11. Effect of adsorption to elemental iron on the transformation of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in solution. Oh SY; Cha DK; Kim BJ; Chiu P Environ Toxicol Chem; 2002 Jul; 21(7):1384-9. PubMed ID: 12109737 [TBL] [Abstract][Full Text] [Related]
12. The impact of γ radiation on the bioavailability of Fe(III) minerals for microbial respiration. Brown AR; Wincott PL; LaVerne JA; Small JS; Vaughan DJ; Pimblott SM; Lloyd JR Environ Sci Technol; 2014 Sep; 48(18):10672-80. PubMed ID: 25195952 [TBL] [Abstract][Full Text] [Related]
13. Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Zhao JS; Manno D; Hawari J Microbiology (Reading); 2008 Apr; 154(Pt 4):1026-1037. PubMed ID: 18375796 [TBL] [Abstract][Full Text] [Related]
14. Riboflavin-mediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite. Bae S; Lee Y; Kwon MJ; Lee W J Hazard Mater; 2014 Jun; 274():24-31. PubMed ID: 24762697 [TBL] [Abstract][Full Text] [Related]
15. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates. ThomasArrigo LK; Byrne JM; Kappler A; Kretzschmar R Environ Sci Technol; 2018 Nov; 52(21):12316-12326. PubMed ID: 30991468 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron. Oh SY; Chiu PC; Kim BJ; Cha DK Water Res; 2003 Oct; 37(17):4275-83. PubMed ID: 12946911 [TBL] [Abstract][Full Text] [Related]
17. Effect of Natural Organic Matter on the Fate of Cadmium During Microbial Ferrihydrite Reduction. Zhou Z; Muehe EM; Tomaszewski EJ; Lezama-Pacheco J; Kappler A; Byrne JM Environ Sci Technol; 2020 Aug; 54(15):9445-9453. PubMed ID: 32633952 [TBL] [Abstract][Full Text] [Related]
18. Reductive transformation of 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and nitroglycerin by pyrite and magnetite. Oh SY; Chiu PC; Cha DK J Hazard Mater; 2008 Oct; 158(2-3):652-5. PubMed ID: 18328622 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1. Paul L; Herrmann S; Koch CB; Philips J; Smolders E Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101 [TBL] [Abstract][Full Text] [Related]
20. Combined Biotic-Abiotic 2,4-Dinitroanisole Degradation in the Presence of Hexahydro-1,3,5-trinitro-1,3,5-triazine. Niedźwiecka JB; McGee K; Finneran KT Environ Sci Technol; 2020 Sep; 54(17):10638-10645. PubMed ID: 32687325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]