BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 16086585)

  • 1. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227.
    Imasheva ES; Shimono K; Balashov SP; Wang JM; Zadok U; Sheves M; Kamo N; Lanyi JK
    Biochemistry; 2005 Aug; 44(32):10828-38. PubMed ID: 16086585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity of retinal photoisomerization in proteorhodopsin is controlled by aspartic acid 227.
    Imasheva ES; Balashov SP; Wang JM; Dioumaev AK; Lanyi JK
    Biochemistry; 2004 Feb; 43(6):1648-55. PubMed ID: 14769042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced proton release in proteorhodopsin at low pH: the possibility of a decrease in the pK(a) of Asp227.
    Tamogami J; Kikukawa T; Nara T; Shimono K; Demura M; Kamo N
    Biochemistry; 2012 Nov; 51(46):9290-301. PubMed ID: 23095117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of Asp227 in the photocycle of proteorhodopsin.
    Herz J; Verhoefen MK; Weber I; Bamann C; Glaubitz C; Wachtveitl J
    Biochemistry; 2012 Jul; 51(28):5589-600. PubMed ID: 22738119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural changes in the photoactive site of proteorhodopsin during the primary photoreaction.
    Bergo V; Amsden JJ; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 2004 Jul; 43(28):9075-83. PubMed ID: 15248764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton transport by proteorhodopsin requires that the retinal Schiff base counterion Asp-97 be anionic.
    Dioumaev AK; Wang JM; Bálint Z; Váró G; Lanyi JK
    Biochemistry; 2003 Jun; 42(21):6582-7. PubMed ID: 12767242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment.
    Yamada K; Kawanabe A; Kandori H
    Biochemistry; 2010 Mar; 49(11):2416-23. PubMed ID: 20170125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreactions of metarhodopsin III.
    Vogel R; Lüdeke S; Radu I; Siebert F; Sheves M
    Biochemistry; 2004 Aug; 43(31):10255-64. PubMed ID: 15287753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
    Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ
    Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2008 Oct; 47(41):10829-33. PubMed ID: 18803408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteorhodopsin is a light-driven proton pump with variable vectoriality.
    Friedrich T; Geibel S; Kalmbach R; Chizhov I; Ataka K; Heberle J; Engelhard M; Bamberg E
    J Mol Biol; 2002 Aug; 321(5):821-38. PubMed ID: 12206764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist.
    Mahalingam M; Vogel R
    Biochemistry; 2006 Dec; 45(51):15624-32. PubMed ID: 17176084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of anions to proteorhodopsin affects the Asp97 pK(a).
    Sharaabi Y; Brumfeld V; Sheves M
    Biochemistry; 2010 Jun; 49(21):4457-65. PubMed ID: 20405821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue.
    Zadok U; Asato AE; Sheves M
    Biochemistry; 2005 Jun; 44(23):8479-85. PubMed ID: 15938637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.