BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 16087216)

  • 1. Effects of zero-valent iron (Fe0) and temperature on the transformation of DDT and its metabolites in lake sediment.
    Eggen T; Majcherczyk A
    Chemosphere; 2006 Feb; 62(7):1116-25. PubMed ID: 16087216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abiotic transformation of DDT in aqueous solutions.
    Pirnie EF; Talley JW; Hundal LS
    Chemosphere; 2006 Nov; 65(9):1576-82. PubMed ID: 16678884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halogenated compounds in a dated sediment core of the Teltow Canal, Berlin: time related sediment contamination.
    Heim S; Ricking M; Schwarzbauer J; Littke R
    Chemosphere; 2005 Dec; 61(10):1427-38. PubMed ID: 15992860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent organochlorine pesticide residues in fish, sediments and water from Lake Bosomtwi, Ghana.
    Darko G; Akoto O; Oppong C
    Chemosphere; 2008 May; 72(1):21-4. PubMed ID: 18397799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of DDT-contaminated water and soil by using pretreated iron byproducts from the automotive industry.
    Satapanajaru T; Anurakpongsatorn P; Pengthamkeerati P
    J Environ Sci Health B; 2006; 41(8):1291-303. PubMed ID: 17090493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of p,p'-DDT and p,p'-DDE in highly and long-term contaminated soil using Fenton reaction in a slurry system.
    Dalla Villa R; Pupo Nogueira RF
    Sci Total Environ; 2006 Dec; 371(1-3):11-8. PubMed ID: 16782172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Aeromonas hydrophila on reductive dechlorination of DDTs by zero-valent iron.
    Cao F; Li FB; Liu TX; Huang DY; Wu CY; Feng CH; Li XM
    J Agric Food Chem; 2010 Dec; 58(23):12366-72. PubMed ID: 21062044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of pesticides, polychlorinated biphenyls (PCBs), and heavy metals in sediments from the Dniester River, Moldova.
    Sapozhnikova Y; Zubcov E; Zubcov N; Schlenk D
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):439-48. PubMed ID: 16132411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of DDT and its metabolites in two estuaries of South China using a SPME-based device: first report of p,p'-DDMU in water column.
    Xing YN; Guo Y; Xie M; Shen RL; Zeng EY
    Environ Pollut; 2009 Apr; 157(4):1382-7. PubMed ID: 19117651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake.
    Spears BM; Carvalho L; Perkins R; Paterson DM
    Water Res; 2008 Feb; 42(4-5):977-86. PubMed ID: 17923145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced reduction of nitrate by zero-valent iron at elevated temperatures.
    Ahn SC; Oh SY; Cha DK
    J Hazard Mater; 2008 Aug; 156(1-3):17-22. PubMed ID: 18179870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles.
    Xiong Z; Zhao D; Pan G
    Water Res; 2007 Aug; 41(15):3497-505. PubMed ID: 17597179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the feasibility of TiO(2) nanotubes for the enrichment of DDT and its metabolites at trace levels in environmental water samples.
    Zhou Q; Ding Y; Xiao J; Liu G; Guo X
    J Chromatogr A; 2007 Apr; 1147(1):10-6. PubMed ID: 17346719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.
    El-Temsah YS; Joner EJ
    Chemosphere; 2013 Jun; 92(1):131-7. PubMed ID: 23522781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of organisms on the release of phosphorus at the interface between sediment and water.
    Jin X; Jiang X; Yao Y; Li L; Wu F
    Water Environ Res; 2006 Nov; 78(12):2405-11. PubMed ID: 17243240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal.
    Lo IM; Lam CS; Lai KC
    Water Res; 2006 Feb; 40(3):595-605. PubMed ID: 16406049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring and modeling reduction of DDT availability to the water column and mussels following activated carbon amendment of contaminated sediment.
    Tomaszewski JE; McLeod PB; Luthy RG
    Water Res; 2008 Oct; 42(16):4348-56. PubMed ID: 18723202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi.
    Purnomo AS; Kamei I; Kondo R
    J Biosci Bioeng; 2008 Jun; 105(6):614-21. PubMed ID: 18640600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale zerovalent iron-mediated degradation of DDT in soil.
    Han Y; Shi N; Wang H; Pan X; Fang H; Yu Y
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6253-63. PubMed ID: 26611630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.