These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 16087339)

  • 1. Microbial lithification in marine stromatolites and hypersaline mats.
    Dupraz C; Visscher PT
    Trends Microbiol; 2005 Sep; 13(9):429-38. PubMed ID: 16087339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas.
    Baumgartner LK; Spear JR; Buckley DH; Pace NR; Reid RP; Dupraz C; Visscher PT
    Environ Microbiol; 2009 Oct; 11(10):2710-9. PubMed ID: 19601956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat.
    Braissant O; Decho AW; Przekop KM; Gallagher KL; Glunk C; Dupraz C; Visscher PT
    FEMS Microbiol Ecol; 2009 Feb; 67(2):293-307. PubMed ID: 19049495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.
    Ries JB; Anderson MA; Hill RT
    Geobiology; 2008 Mar; 6(2):106-19. PubMed ID: 18380873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Between a Rock and a Soft Place: The Role of Viruses in Lithification of Modern Microbial Mats.
    White RA; Visscher PT; Burns BP
    Trends Microbiol; 2021 Mar; 29(3):204-213. PubMed ID: 32654857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterially mediated precipitation in marine stromatolites.
    Paerl HW; Steppe TF; Reid RP
    Environ Microbiol; 2001 Feb; 3(2):123-30. PubMed ID: 11321542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria.
    Gallagher KL; Kading TJ; Braissant O; Dupraz C; Visscher PT
    Geobiology; 2012 Nov; 10(6):518-30. PubMed ID: 22925453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microbial geochemical calcium cycle].
    Zavarzin GA
    Mikrobiologiia; 2002; 71(1):5-22. PubMed ID: 11910807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites.
    Reid RP; Visscher PT; Decho AW; Stolz JF; Bebout BM; Dupraz C; Macintyre IG; Paerl HW; Pinckney JL; Prufert-Bebout L; Steppe TF; DesMarais DJ
    Nature; 2000 Aug; 406(6799):989-92. PubMed ID: 10984051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea.
    Kremer B; Kazmierczak J; Stal LJ
    Geobiology; 2008 Jan; 6(1):46-56. PubMed ID: 18380885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites.
    Bartley JK; Kah LC; Frank TD; Lyons TW
    Geobiology; 2015 Jan; 13(1):15-32. PubMed ID: 25354129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care?
    Nealson KH; Inagaki F; Takai K
    Trends Microbiol; 2005 Sep; 13(9):405-10. PubMed ID: 16054814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-lithifying microbial ecosystem dissolves peritidal lime sand.
    Present TM; Gomes ML; Trower EJ; Stein NT; Lingappa UF; Naviaux J; Thorpe MT; Cantine MD; Fischer WW; Knoll AH; Grotzinger JP
    Nat Commun; 2021 May; 12(1):3037. PubMed ID: 34031392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites.
    Allwood AC; Burch IW; Rouchy JM; Coleman M
    Astrobiology; 2013 Sep; 13(9):870-86. PubMed ID: 24047112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis.
    Pace A; Bourillot R; Bouton A; Vennin E; Braissant O; Dupraz C; Duteil T; Bundeleva I; Patrier P; Galaup S; Yokoyama Y; Franceschi M; Virgone A; Visscher PT
    Geobiology; 2018 Jul; 16(4):378-398. PubMed ID: 29573198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.
    Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL
    Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.
    Berelson WM; Corsetti FA; Pepe-Ranney C; Hammond DE; Beaumont W; Spear JR
    Geobiology; 2011 Sep; 9(5):411-24. PubMed ID: 21777367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor.
    Edwards KJ; Bach W; McCollom TM
    Trends Microbiol; 2005 Sep; 13(9):449-56. PubMed ID: 16054363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key energy metabolisms in modern living microbialites from hypersaline Andean lagoons of the Salar de Atacama, Chile.
    Osman JR; Castillo J; Sanhueza V; Miller AZ; Novoselov A; Cotoras D; Morales D
    Sci Total Environ; 2024 Aug; 937():173469. PubMed ID: 38788953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial species richness and metabolic activities in hypersaline microbial mats: insight into biosignature formation through lithification.
    Baumgartner LK; Dupraz C; Buckley DH; Spear JR; Pace NR; Visscher PT
    Astrobiology; 2009 Nov; 9(9):861-74. PubMed ID: 19968463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.