BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 16087339)

  • 1. Microbial lithification in marine stromatolites and hypersaline mats.
    Dupraz C; Visscher PT
    Trends Microbiol; 2005 Sep; 13(9):429-38. PubMed ID: 16087339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas.
    Baumgartner LK; Spear JR; Buckley DH; Pace NR; Reid RP; Dupraz C; Visscher PT
    Environ Microbiol; 2009 Oct; 11(10):2710-9. PubMed ID: 19601956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat.
    Braissant O; Decho AW; Przekop KM; Gallagher KL; Glunk C; Dupraz C; Visscher PT
    FEMS Microbiol Ecol; 2009 Feb; 67(2):293-307. PubMed ID: 19049495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time.
    Ries JB; Anderson MA; Hill RT
    Geobiology; 2008 Mar; 6(2):106-19. PubMed ID: 18380873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Between a Rock and a Soft Place: The Role of Viruses in Lithification of Modern Microbial Mats.
    White RA; Visscher PT; Burns BP
    Trends Microbiol; 2021 Mar; 29(3):204-213. PubMed ID: 32654857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterially mediated precipitation in marine stromatolites.
    Paerl HW; Steppe TF; Reid RP
    Environ Microbiol; 2001 Feb; 3(2):123-30. PubMed ID: 11321542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria.
    Gallagher KL; Kading TJ; Braissant O; Dupraz C; Visscher PT
    Geobiology; 2012 Nov; 10(6):518-30. PubMed ID: 22925453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microbial geochemical calcium cycle].
    Zavarzin GA
    Mikrobiologiia; 2002; 71(1):5-22. PubMed ID: 11910807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites.
    Reid RP; Visscher PT; Decho AW; Stolz JF; Bebout BM; Dupraz C; Macintyre IG; Paerl HW; Pinckney JL; Prufert-Bebout L; Steppe TF; DesMarais DJ
    Nature; 2000 Aug; 406(6799):989-92. PubMed ID: 10984051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium carbonate precipitation in cyanobacterial mats from sandy tidal flats of the North Sea.
    Kremer B; Kazmierczak J; Stal LJ
    Geobiology; 2008 Jan; 6(1):46-56. PubMed ID: 18380885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites.
    Bartley JK; Kah LC; Frank TD; Lyons TW
    Geobiology; 2015 Jan; 13(1):15-32. PubMed ID: 25354129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care?
    Nealson KH; Inagaki F; Takai K
    Trends Microbiol; 2005 Sep; 13(9):405-10. PubMed ID: 16054814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-lithifying microbial ecosystem dissolves peritidal lime sand.
    Present TM; Gomes ML; Trower EJ; Stein NT; Lingappa UF; Naviaux J; Thorpe MT; Cantine MD; Fischer WW; Knoll AH; Grotzinger JP
    Nat Commun; 2021 May; 12(1):3037. PubMed ID: 34031392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites.
    Allwood AC; Burch IW; Rouchy JM; Coleman M
    Astrobiology; 2013 Sep; 13(9):870-86. PubMed ID: 24047112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis.
    Pace A; Bourillot R; Bouton A; Vennin E; Braissant O; Dupraz C; Duteil T; Bundeleva I; Patrier P; Galaup S; Yokoyama Y; Franceschi M; Virgone A; Visscher PT
    Geobiology; 2018 Jul; 16(4):378-398. PubMed ID: 29573198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.
    Jiang H; Dong H; Yu B; Liu X; Li Y; Ji S; Zhang CL
    Environ Microbiol; 2007 Oct; 9(10):2603-21. PubMed ID: 17803783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.
    Berelson WM; Corsetti FA; Pepe-Ranney C; Hammond DE; Beaumont W; Spear JR
    Geobiology; 2011 Sep; 9(5):411-24. PubMed ID: 21777367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor.
    Edwards KJ; Bach W; McCollom TM
    Trends Microbiol; 2005 Sep; 13(9):449-56. PubMed ID: 16054363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key energy metabolisms in modern living microbialites from hypersaline Andean lagoons of the Salar de Atacama, Chile.
    Osman JR; Castillo J; Sanhueza V; Miller AZ; Novoselov A; Cotoras D; Morales D
    Sci Total Environ; 2024 Aug; 937():173469. PubMed ID: 38788953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial species richness and metabolic activities in hypersaline microbial mats: insight into biosignature formation through lithification.
    Baumgartner LK; Dupraz C; Buckley DH; Spear JR; Pace NR; Visscher PT
    Astrobiology; 2009 Nov; 9(9):861-74. PubMed ID: 19968463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.