These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1968 related articles for article (PubMed ID: 16087444)

  • 1. Investigations into resting-state connectivity using independent component analysis.
    Beckmann CF; DeLuca M; Devlin JT; Smith SM
    Philos Trans R Soc Lond B Biol Sci; 2005 May; 360(1457):1001-13. PubMed ID: 16087444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of spatio-temporal decomposition techniques for group analysis of fMRI resting state data sets.
    Afshin-Pour B; Grady C; Strother S
    Neuroimage; 2014 Feb; 87():363-82. PubMed ID: 24201012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.
    Smitha KA; Akhil Raja K; Arun KM; Rajesh PG; Thomas B; Kapilamoorthy TR; Kesavadas C
    Neuroradiol J; 2017 Aug; 30(4):305-317. PubMed ID: 28353416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anticorrelated networks in resting-state fMRI-BOLD data.
    Liu Y; Huang L; Li M; Zhou Z; Hu D
    Biomed Mater Eng; 2015; 26 Suppl 1():S1201-11. PubMed ID: 26405879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain modifications after acute alcohol consumption analyzed by resting state fMRI.
    Spagnolli F; Cerini R; Cardobi N; Barillari M; Manganotti P; Storti S; Mucelli RP
    Magn Reson Imaging; 2013 Oct; 31(8):1325-30. PubMed ID: 23680187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consistent resting-state networks across healthy subjects.
    Damoiseaux JS; Rombouts SA; Barkhof F; Scheltens P; Stam CJ; Smith SM; Beckmann CF
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13848-53. PubMed ID: 16945915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A variance components model for statistical inference on functional connectivity networks.
    Fiecas M; Cribben I; Bahktiari R; Cummine J
    Neuroimage; 2017 Apr; 149():256-266. PubMed ID: 28130192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially regularized machine learning for task and resting-state fMRI.
    Song X; Panych LP; Chen NK
    J Neurosci Methods; 2016 Jan; 257():214-28. PubMed ID: 26470627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hierarchical model for probabilistic independent component analysis of multi-subject fMRI studies.
    Guo Y; Tang L
    Biometrics; 2013 Dec; 69(4):970-81. PubMed ID: 24033125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study.
    Klumpers LE; Cole DM; Khalili-Mahani N; Soeter RP; Te Beek ET; Rombouts SA; van Gerven JM
    Neuroimage; 2012 Nov; 63(3):1701-11. PubMed ID: 22885247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses.
    Riera J; Aubert E; Iwata K; Kawashima R; Wan X; Ozaki T
    Philos Trans R Soc Lond B Biol Sci; 2005 May; 360(1457):1025-41. PubMed ID: 16087446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing functional connectivity in the human brain by fMRI.
    Rogers BP; Morgan VL; Newton AT; Gore JC
    Magn Reson Imaging; 2007 Dec; 25(10):1347-57. PubMed ID: 17499467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain.
    Fransson P; Metsäranta M; Blennow M; Åden U; Lagercrantz H; Vanhatalo S
    Cereb Cortex; 2013 Mar; 23(3):638-46. PubMed ID: 22402348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of the probabilistic template of default mode network derived from resting-state fMRI.
    Wang D; Kong Y; Chu WC; Tam CW; Lam LC; Wang Y; Northoff G; Mok VC; Wang Y; Shi L
    IEEE Trans Biomed Eng; 2014 Oct; 61(10):2550-5. PubMed ID: 24846502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic mode decomposition of resting-state and task fMRI.
    Casorso J; Kong X; Chi W; Van De Ville D; Yeo BTT; Liégeois R
    Neuroimage; 2019 Jul; 194():42-54. PubMed ID: 30904469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets.
    Arfanakis K; Cordes D; Haughton VM; Moritz CH; Quigley MA; Meyerand ME
    Magn Reson Imaging; 2000 Oct; 18(8):921-30. PubMed ID: 11121694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 99.