These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 16087470)

  • 1. Pedestrian lower limb injury criteria evaluation: a finite element approach.
    Arnoux PJ; Cesari D; Behr M; Thollon L; Brunet C
    Traffic Inj Prev; 2005 Sep; 6(3):288-97. PubMed ID: 16087470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety.
    Mo F; Masson C; Cesari D; Arnoux PJ
    Traffic Inj Prev; 2013; 14(4):378-86. PubMed ID: 23531261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of knee injury risks in car-to-pedestrian impacts.
    Nagasaka K; Mizuno K; Tanaka E; Yamamoto S; Iwamoto M; Miki K; Kajzer J
    Traffic Inj Prev; 2003 Dec; 4(4):345-54. PubMed ID: 14630583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injury tolerance and moment response of the knee joint to combined valgus bending and shear loading.
    Bose D; Bhalla KS; Untaroiu CD; Ivarsson BJ; Crandall JR; Hurwitz S
    J Biomech Eng; 2008 Jun; 130(3):031008. PubMed ID: 18532857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pedestrian injuries: viscoelastic properties of human knee ligaments at high loading rates.
    van Dommelen JA; Jolandan MM; Ivarsson BJ; Millington SA; Raut M; Kerrigan JR; Crandall JR; Diduch DR
    Traffic Inj Prev; 2005 Sep; 6(3):278-87. PubMed ID: 16087469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of vehicle bumper height and impact velocity on type of lower extremity injury in vehicle-pedestrian accidents.
    Matsui Y
    Accid Anal Prev; 2005 Jul; 37(4):633-40. PubMed ID: 15949454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Injury criteria of knee joint regarding car-pedestrian impact environments.
    Mo F; Arnoux PJ; Cesari D; Masson C
    Comput Methods Biomech Biomed Engin; 2012; 15 Suppl 1():301-2. PubMed ID: 23009517
    [No Abstract]   [Full Text] [Related]  

  • 8. Injury tolerance of tibia for the car-pedestrian impact.
    Mo F; Arnoux PJ; Jure JJ; Masson C
    Accid Anal Prev; 2012 May; 46():18-25. PubMed ID: 22310039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development and validation of a finite element model of human knee joint for dynamic analysis].
    Li H; Gu Y; Ruan S; Cui S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):97-101. PubMed ID: 22404016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the influence of passenger vehicles front-end design on pedestrian lower extremity injuries by means of the LLMS model.
    Scattina A; Mo F; Masson C; Avalle M; Arnoux PJ
    Traffic Inj Prev; 2018 Jul; 19(5):535-541. PubMed ID: 29381438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of leg fracture level and vehicle front-end geometry on pedestrian knee injury and response.
    Dunmore MC; Brooks R; Madeley NJ; McNally DS
    Proc Inst Mech Eng H; 2006 Nov; 220(8):857-69. PubMed ID: 17236519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injuries to the hip joint in frontal motor-vehicle crashes: biomechanical and real-world perspectives.
    Rupp JD; Schneider LW
    Orthop Clin North Am; 2004 Oct; 35(4):493-504, vii. PubMed ID: 15363924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an accurate three-dimensional finite element knee model.
    Penrose JM; Holt GM; Beaugonin M; Hose DR
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):291-300. PubMed ID: 12186708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method to investigate in vivo knee behavior using a finite element model of the lower limb.
    Beillas P; Papaioannou G; Tashman S; Yang KH
    J Biomech; 2004 Jul; 37(7):1019-30. PubMed ID: 15165872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the effects of muscle activation on knee, thigh, and hip injuries in frontal crashes using a finite-element model with muscle forces from subject testing and musculoskeletal modeling.
    Chang CY; Rupp JD; Reed MP; Hughes RE; Schneider LW
    Stapp Car Crash J; 2009 Nov; 53():291-328. PubMed ID: 20058559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of active muscle forces on knee injury risks for pedestrian standing posture at low-speed impacts.
    Chawla A; Mukherjee S; Soni A; Malhotra R
    Traffic Inj Prev; 2008 Dec; 9(6):544-51. PubMed ID: 19058101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dashboard knee injury.
    Nagel DA; Burton DS; Manning J
    Clin Orthop Relat Res; 1977; (126):203-8. PubMed ID: 598118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower limb asymmetry and patellofemoral joint incongruence in the etiology of knee exertion injuries in athletes.
    Kujala UM; Friberg O; Aalto T; Kvist M; Osterman K
    Int J Sports Med; 1987 Jun; 8(3):214-20. PubMed ID: 3623784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Car-to-pedestrian collision reconstruction with injury as an evaluation index.
    Weng Y; Jin X; Zhao Z; Zhang X
    Accid Anal Prev; 2010 Jul; 42(4):1320-5. PubMed ID: 20441848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A finite element model of a six-year-old child for simulating pedestrian accidents.
    Meng Y; Pak W; Guleyupoglu B; Koya B; Gayzik FS; Untaroiu CD
    Accid Anal Prev; 2017 Jan; 98():206-213. PubMed ID: 27760408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.