BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16087874)

  • 1. Structure and fluctuations of a single floating lipid bilayer.
    Daillant J; Bellet-Amalric E; Braslau A; Charitat T; Fragneto G; Graner F; Mora S; Rieutord F; Stidder B
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11639-44. PubMed ID: 16087874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The component group structure of DPPC bilayers obtained by specular neutron reflectometry.
    Belička M; Gerelli Y; Kučerka N; Fragneto G
    Soft Matter; 2015 Aug; 11(31):6275-83. PubMed ID: 26160133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supported bilayers: combined specular and diffuse X-ray scattering.
    Malaquin L; Charitat T; Daillant J
    Eur Phys J E Soft Matter; 2010 Mar; 31(3):285-301. PubMed ID: 20306279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of the repulsive pressure between phosphatidylcholine bilayers.
    Simon SA; Advani S; McIntosh TJ
    Biophys J; 1995 Oct; 69(4):1473-83. PubMed ID: 8534818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations.
    Pan J; Cheng X; Sharp M; Ho CS; Khadka N; Katsaras J
    Soft Matter; 2015 Jan; 11(1):130-8. PubMed ID: 25369786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuations and destabilization of single phospholipid bilayers.
    Charitat T; Lecuyer S; Fragneto G
    Biointerphases; 2008 Jun; 3(2):FB3. PubMed ID: 20408680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron reflectivity studies of single lipid bilayers supported on planar substrates.
    Krueger S; Koenig BW; Orts WJ; Berk NF; Majkrzak CF; Gawrisch K
    Basic Life Sci; 1996; 64():205-13. PubMed ID: 9031513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles.
    Kucerka N; Liu Y; Chu N; Petrache HI; Tristram-Nagle S; Nagle JF
    Biophys J; 2005 Apr; 88(4):2626-37. PubMed ID: 15665131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and fluctuations of phosphatidylcholines in the vicinity of the main phase transition.
    Pabst G; Amenitsch H; Kharakoz DP; Laggner P; Rappolt M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021908. PubMed ID: 15447516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-law fluctuations in phase-separated lipid membranes.
    Winter R; Gabke A; Czeslik C; Pfeifer P
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7354-9. PubMed ID: 11970681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal unbinding of highly oriented phospholipid membranes.
    Vogel M; Münster C; Fenzl W; Salditt T
    Phys Rev Lett; 2000 Jan; 84(2):390-3. PubMed ID: 11015918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of ethanol on the phase transition temperature and the phase structure of monounsaturated phosphatidylcholines.
    McIntosh TJ; Lin H; Li S; Huang C
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):219-30. PubMed ID: 11342160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering.
    Pan J; Heberle FA; Tristram-Nagle S; Szymanski M; Koepfinger M; Katsaras J; Kučerka N
    Biochim Biophys Acta; 2012 Sep; 1818(9):2135-48. PubMed ID: 22583835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimentally determined tilt and bending moduli of single-component lipid bilayers.
    Nagle JF
    Chem Phys Lipids; 2017 Jun; 205():18-24. PubMed ID: 28412174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffuse scattering provides material parameters and electron density profiles of biomembranes.
    Liu Y; Nagle JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):040901. PubMed ID: 15169001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A macroscopic description of lipid bilayer phase transitions of mixed-chain phosphatidylcholines: chain-length and chain-asymmetry dependence.
    Chen L; Johnson ML; Biltonen RL
    Biophys J; 2001 Jan; 80(1):254-70. PubMed ID: 11159399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of the elastic properties of the lipid bilayer by atomic force microscopy: bending, tension, and adhesion.
    Ovalle-García E; Torres-Heredia JJ; Antillón A; Ortega-Blake I
    J Phys Chem B; 2011 Apr; 115(16):4826-33. PubMed ID: 21456561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes.
    Shah J; Duclos RI; Shipley GG
    Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid phase structure of EPC and DMPC bilayers.
    Petrache HI; Tristram-Nagle S; Nagle JF
    Chem Phys Lipids; 1998 Sep; 95(1):83-94. PubMed ID: 9807810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method for obtaining structure and interactions from oriented lipid bilayers.
    Lyatskaya Y; Liu Y; Tristram-Nagle S; Katsaras J; Nagle JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011907. PubMed ID: 11304287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.