These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 16087878)

  • 1. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction.
    Kam NW; O'Connell M; Wisdom JA; Dai H
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11600-5. PubMed ID: 16087878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes.
    Zhou F; Xing D; Ou Z; Wu B; Resasco DE; Chen WR
    J Biomed Opt; 2009; 14(2):021009. PubMed ID: 19405722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes.
    Moon HK; Lee SH; Choi HC
    ACS Nano; 2009 Nov; 3(11):3707-13. PubMed ID: 19877694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells.
    Xiao Y; Gao X; Taratula O; Treado S; Urbas A; Holbrook RD; Cavicchi RE; Avedisian CT; Mitra S; Savla R; Wagner PD; Srivastava S; He H
    BMC Cancer; 2009 Oct; 9():351. PubMed ID: 19799784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing.
    Kam NW; Liu Z; Dai H
    J Am Chem Soc; 2005 Sep; 127(36):12492-3. PubMed ID: 16144388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes as a protein toxin transporter for selective HER2-positive breast cancer cell destruction.
    Weng X; Wang M; Ge J; Yu S; Liu B; Zhong J; Kong J
    Mol Biosyst; 2009 Oct; 5(10):1224-31. PubMed ID: 19756312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Selective Photothermal Therapy by a Phenoxylated-Dextran-Functionalized Smart Carbon Nanotube Platform.
    Han S; Kwon T; Um JE; Haam S; Kim WJ
    Adv Healthc Mater; 2016 May; 5(10):1147-56. PubMed ID: 27029602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as "bomb" agents.
    Kang B; Yu D; Dai Y; Chang S; Chen D; Ding Y
    Small; 2009 Jun; 5(11):1292-301. PubMed ID: 19274646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria-targeting single-walled carbon nanotubes for cancer photothermal therapy.
    Zhou F; Wu S; Wu B; Chen WR; Xing D
    Small; 2011 Oct; 7(19):2727-35. PubMed ID: 21861293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes.
    Wang L; Shi J; Zhang H; Li H; Gao Y; Wang Z; Wang H; Li L; Zhang C; Chen C; Zhang Z; Zhang Y
    Biomaterials; 2013 Jan; 34(1):262-74. PubMed ID: 23046752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle.
    Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z
    Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy.
    Tsai MF; Chang SH; Cheng FY; Shanmugam V; Cheng YS; Su CH; Yeh CS
    ACS Nano; 2013 Jun; 7(6):5330-42. PubMed ID: 23651267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Golden single-walled carbon nanotubes prepared using double layer polysaccharides bridge for photothermal therapy.
    Meng L; Xia W; Liu L; Niu L; Lu Q
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4989-96. PubMed ID: 24606763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes.
    Kosuge H; Sherlock SP; Kitagawa T; Dash R; Robinson JT; Dai H; McConnell MV
    J Am Heart Assoc; 2012 Dec; 1(6):e002568. PubMed ID: 23316318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion stability and exothermic properties of DNA-functionalized single-walled carbon nanotubes.
    Kawaguchi M; Ohno J; Irie A; Fukushima T; Yamazaki J; Nakashima N
    Int J Nanomedicine; 2011; 6():729-36. PubMed ID: 21556347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size of single-wall carbon nanotube affects the folate receptor-mediated cancer cell targeting.
    Charbgoo F; Nikkhah M; Behmanesh M
    Biotechnol Appl Biochem; 2018 May; 65(3):328-337. PubMed ID: 28857275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery.
    Li H; Fan X; Chen X
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4500-7. PubMed ID: 26859435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring the antioxidant effects of catechin using single-walled carbon nanotubes: Comparative analysis by near-infrared absorption and near-infrared photoluminescence.
    Ishibashi Y; Ito M; Homma Y; Umemura K
    Colloids Surf B Biointerfaces; 2018 Jan; 161():139-146. PubMed ID: 29073526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules.
    Welsher K; Liu Z; Daranciang D; Dai H
    Nano Lett; 2008 Feb; 8(2):586-90. PubMed ID: 18197719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.