BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16088883)

  • 1. Variable-density one-shot Fourier velocity encoding.
    DiCarlo JC; Hargreaves BA; Nayak KS; Hu BS; Pauly JM; Nishimura DG
    Magn Reson Med; 2005 Sep; 54(3):645-55. PubMed ID: 16088883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peak velocity determination using fast Fourier velocity encoding with minimal spatial encoding.
    Galea D; Lauzon ML; Drangova M
    Med Phys; 2002 Aug; 29(8):1719-28. PubMed ID: 12201419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid quantitation of cardiovascular flow using slice-selective fourier velocity encoding with spiral readouts.
    Carvalho JL; Nayak KS
    Magn Reson Med; 2007 Apr; 57(4):639-46. PubMed ID: 17390349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The accuracy of magnetic resonance phase velocity measurements in stenotic flow.
    Siegel JM; Oshinski JN; Pettigrew RI; Ku DN
    J Biomech; 1996 Dec; 29(12):1665-72. PubMed ID: 8945670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-gated Fourier velocity encoding.
    Macgowan CK; Liu GK; van Amerom JF; Sussman MS; Wright GA
    Magn Reson Imaging; 2010 Jan; 28(1):95-102. PubMed ID: 19553052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time Fourier velocity encoding: an in vivo evaluation.
    Macgowan CK; Kellenberger CJ; Detsky JS; Roman K; Yoo SJ
    J Magn Reson Imaging; 2005 Mar; 21(3):297-304. PubMed ID: 15723365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing artifacts in one-dimensional Fourier velocity encoding for fast and pulsatile flow.
    Lee D; Santos JM; Hu BS; Pauly JM; Kerr AB
    Magn Reson Med; 2012 Dec; 68(6):1876-85. PubMed ID: 22457248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsed Doppler signal processing for use in mice: design and evaluation.
    Reddy AK; Jones AD; Martono C; Caro WA; Madala S; Hartley CJ
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1764-70. PubMed ID: 16235662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: in vitro and in vivo validation.
    Lee VS; Spritzer CE; Carroll BA; Pool LG; Bernstein MA; Heinle SK; MacFall JR
    AJR Am J Roentgenol; 1997 Oct; 169(4):1125-31. PubMed ID: 9308476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated dynamic Fourier velocity encoding by exploiting velocity-spatio-temporal correlations.
    Hansen MS; Baltes C; Tsao J; Kozerke S; Pruessmann KP; Boesiger P; Pedersen EM
    MAGMA; 2004 Nov; 17(2):86-94. PubMed ID: 15565503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels.
    Oshinski JN; Ku DN; Pettigrew RI
    Magn Reson Med; 1995 Feb; 33(2):193-9. PubMed ID: 7707909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized real-time velocity spectra determination.
    Hu BS; Pauly JM; Nishimura DG
    Magn Reson Med; 1993 Sep; 30(3):393-8. PubMed ID: 8412614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of pulsatile flow using MRI and a Bayesian technique of probability analysis.
    Wise RG; Newling B; Gates AR; Xing D; Carpenter TA; Hall LD
    Magn Reson Imaging; 1996; 14(2):173-85. PubMed ID: 8847973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of measurement accuracy for three-dimensional angiography system using various phantoms.
    Yamura M; Hirai T; Korogi Y; Ikushima I; Yamashita Y
    Radiat Med; 2005 May; 23(3):175-81. PubMed ID: 15940064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved Doppler model for obtaining accurate maximum blood velocities.
    Ricci S; Matera R; Tortoli P
    Ultrasonics; 2014 Sep; 54(7):2006-14. PubMed ID: 24934798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
    Blake JR; Easson WJ; Hoskins PR
    Ultrasound Med Biol; 2009 Sep; 35(9):1510-24. PubMed ID: 19540655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of arterial stenosis in a flow model with power Doppler angiography: accuracy and observations on blood echogenicity.
    Cloutier G; Qin Z; Garcia D; Soulez G; Oliva V; Durand LG
    Ultrasound Med Biol; 2000 Nov; 26(9):1489-501. PubMed ID: 11179623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated radial Fourier-velocity encoding using compressed sensing.
    Hilbert F; Wech T; Hahn D; Köstler H
    Z Med Phys; 2014 Sep; 24(3):190-200. PubMed ID: 24239136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal Clutter Filtering of Ultrafast Ultrasound Data Highly Increases Doppler and fUltrasound Sensitivity.
    Demené C; Deffieux T; Pernot M; Osmanski BF; Biran V; Gennisson JL; Sieu LA; Bergel A; Franqui S; Correas JM; Cohen I; Baud O; Tanter M
    IEEE Trans Med Imaging; 2015 Nov; 34(11):2271-85. PubMed ID: 25955583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.