These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 16088900)
1. Development of multifunctional polymer-mineral composite materials for bone tissue engineering. Vlakh EG; Panarin EF; Tennikova TB; Suck K; Kasper C J Biomed Mater Res A; 2005 Nov; 75(2):333-41. PubMed ID: 16088900 [TBL] [Abstract][Full Text] [Related]
2. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering. Meretoja VV; Helminen AO; Korventausta JJ; Haapa-aho V; Seppälä JV; Närhi TO J Biomed Mater Res A; 2006 May; 77(2):261-8. PubMed ID: 16392138 [TBL] [Abstract][Full Text] [Related]
3. Biomimetic scaffolds fabricated from apatite-coated polymer microspheres. Davis HE; Rao RR; He J; Leach JK J Biomed Mater Res A; 2009 Sep; 90(4):1021-31. PubMed ID: 18655148 [TBL] [Abstract][Full Text] [Related]
4. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering. Chim H; Hutmacher DW; Chou AM; Oliveira AL; Reis RL; Lim TC; Schantz JT Int J Oral Maxillofac Surg; 2006 Oct; 35(10):928-34. PubMed ID: 16762529 [TBL] [Abstract][Full Text] [Related]
5. The engineering of craniofacial tissues in the laboratory: a review of biomaterials for scaffolds and implant coatings. Abukawa H; Papadaki M; Abulikemu M; Leaf J; Vacanti JP; Kaban LB; Troulis MJ Dent Clin North Am; 2006 Apr; 50(2):205-16, viii. PubMed ID: 16530058 [TBL] [Abstract][Full Text] [Related]
6. A study on the influence of biocompatible composites with bioactive ligands toward their effect on cell adhesion and growth for the application in bone tissue engineering. Roeker S; Böhm S; Diederichs S; Bode F; Quade A; Korzhikov V; van Griensven M; Tennikova TB; Kasper C J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):153-62. PubMed ID: 19402140 [TBL] [Abstract][Full Text] [Related]
7. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering. Rosa AL; de Oliveira PT; Beloti MM Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS; Katti DR; Dash R Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [TBL] [Abstract][Full Text] [Related]
9. Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix. Nichols HL; Zhang N; Zhang J; Shi D; Bhaduri S; Wen X J Biomed Mater Res A; 2007 Aug; 82(2):373-82. PubMed ID: 17295227 [TBL] [Abstract][Full Text] [Related]
10. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Siebers MC; ter Brugge PJ; Walboomers XF; Jansen JA Biomaterials; 2005 Jan; 26(2):137-46. PubMed ID: 15207460 [TBL] [Abstract][Full Text] [Related]
11. Prospective use of electrospun ultra-fine silicate fibers for bone tissue engineering. Sakai S; Yamada Y; Yamaguchi T; Kawakami K Biotechnol J; 2006 Sep; 1(9):958-62. PubMed ID: 16941440 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Rezwan K; Chen QZ; Blaker JJ; Boccaccini AR Biomaterials; 2006 Jun; 27(18):3413-31. PubMed ID: 16504284 [TBL] [Abstract][Full Text] [Related]
13. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
14. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
15. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Hidalgo-Bastida LA; Barry JJ; Everitt NM; Rose FR; Buttery LD; Hall IP; Claycomb WC; Shakesheff KM Acta Biomater; 2007 Jul; 3(4):457-62. PubMed ID: 17321810 [TBL] [Abstract][Full Text] [Related]
16. Design and synthesis of biomimetic multicomponent all-bone-minerals bionanocomposites. Biswas A; Bayer IS; Zhao H; Wang T; Watanabe F; Biris AS Biomacromolecules; 2010 Oct; 11(10):2545-9. PubMed ID: 20863130 [TBL] [Abstract][Full Text] [Related]
17. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Madhumathi K; Sudheesh Kumar PT; Kavya KC; Furuike T; Tamura H; Nair SV; Jayakumar R Int J Biol Macromol; 2009 Oct; 45(3):289-92. PubMed ID: 19549539 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering. Mistry AS; Cheng SH; Yeh T; Christenson E; Jansen JA; Mikos AG J Biomed Mater Res A; 2009 Apr; 89(1):68-79. PubMed ID: 18428800 [TBL] [Abstract][Full Text] [Related]
19. Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Zhao F; Grayson WL; Ma T; Bunnell B; Lu WW Biomaterials; 2006 Mar; 27(9):1859-67. PubMed ID: 16225916 [TBL] [Abstract][Full Text] [Related]
20. [Development of biodegradable polymer scaffolds for bone tissue engineering]. Zheng L; Wang Q; Pei GX Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2000 May; 14(3):175-80. PubMed ID: 12080858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]