These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 16088976)
1. Structural analysis of lignin by resonance Raman spectroscopy. Barsberg S; Matousek P; Towrie M Macromol Biosci; 2005 Aug; 5(8):743-52. PubMed ID: 16088976 [TBL] [Abstract][Full Text] [Related]
2. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures. Saariaho AM; Jääskeläinen AS; Nuopponen M; Vuorinen T Appl Spectrosc; 2003 Jan; 57(1):58-66. PubMed ID: 14610937 [TBL] [Abstract][Full Text] [Related]
3. Theoretical and Raman spectroscopic studies of phenolic lignin model monomers. Larsen KL; Barsberg S J Phys Chem B; 2010 Jun; 114(23):8009-21. PubMed ID: 20499919 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera. Efremov EV; Buijs JB; Gooijer C; Ariese F Appl Spectrosc; 2007 Jun; 61(6):571-8. PubMed ID: 17650366 [TBL] [Abstract][Full Text] [Related]
5. Characterization of woody and herbaceous biomasses lignin composition with 1064 nm dispersive multichannel Raman spectroscopy. Lupoi JS; Smith EA Appl Spectrosc; 2012 Aug; 66(8):903-10. PubMed ID: 22800567 [TBL] [Abstract][Full Text] [Related]
6. Environmental effects on the lignin model monomer, vanillyl alcohol, studied by Raman spectroscopy. Larsen KL; Barsberg S J Phys Chem B; 2011 Oct; 115(39):11470-80. PubMed ID: 21830768 [TBL] [Abstract][Full Text] [Related]
7. Experiments in Raman spectroscopy of hair: exciting light and molecular orientation. Carpenter P; Bell F J Cosmet Sci; 2009; 60(2):199-204. PubMed ID: 19450420 [TBL] [Abstract][Full Text] [Related]
8. Lignin radicals in the plant cell wall probed by Kerr-gated resonance Raman spectroscopy. Barsberg S; Matousek P; Towrie M; Jørgensen H; Felby C Biophys J; 2006 Apr; 90(8):2978-86. PubMed ID: 16443659 [TBL] [Abstract][Full Text] [Related]
9. Component analysis of the fluorescence spectra of a lignin model compound. Radotić K; Kalauzi A; Djikanović D; Jeremić M; Leblanc RM; Cerović ZG J Photochem Photobiol B; 2006 Apr; 83(1):1-10. PubMed ID: 16406801 [TBL] [Abstract][Full Text] [Related]
10. Deconvolution of fluorescence spectra: contribution to the structural analysis of complex molecules. Djikanović D; Kalauzi A; Jeremić M; Mićić M; Radotić K Colloids Surf B Biointerfaces; 2007 Feb; 54(2):188-92. PubMed ID: 17134884 [TBL] [Abstract][Full Text] [Related]
11. Effect of excitation wavelength on the Raman spectroscopy of the porcine photoreceptor layer from the area centralis. Beattie JR; Brockbank S; McGarvey JJ; Curry WJ Mol Vis; 2005 Sep; 11():825-32. PubMed ID: 16254551 [TBL] [Abstract][Full Text] [Related]
12. Studying disorder in graphite-based systems by Raman spectroscopy. Pimenta MA; Dresselhaus G; Dresselhaus MS; Cançado LG; Jorio A; Saito R Phys Chem Chem Phys; 2007 Mar; 9(11):1276-91. PubMed ID: 17347700 [TBL] [Abstract][Full Text] [Related]
13. Ground and excited state resonance Raman spectra of an azacrown-substituted [(bpy)Re(CO)3L]+ complex: characterization of excited states, determination of structure and bonding, and observation of metal cation release from the azacrown. Lewis JD; Clark IP; Moore JN J Phys Chem A; 2007 Jan; 111(1):50-8. PubMed ID: 17201387 [TBL] [Abstract][Full Text] [Related]
14. Rapid determination of syringyl: guaiacyl ratios using FT-Raman spectroscopy. Sun L; Varanasi P; Yang F; Loqué D; Simmons BA; Singh S Biotechnol Bioeng; 2012 Mar; 109(3):647-56. PubMed ID: 22012706 [TBL] [Abstract][Full Text] [Related]
15. Quantitative characterization of a hardwood milled wood lignin by nuclear magnetic resonance spectroscopy. Capanema EA; Balakshin MY; Kadla JF J Agric Food Chem; 2005 Dec; 53(25):9639-49. PubMed ID: 16332110 [TBL] [Abstract][Full Text] [Related]
16. Resonance hyper-Raman excitation profiles of a donor-acceptor substituted distyrylbenzene: one-photon and two-photon states. Shoute LC; Bartholomew GP; Bazan GC; Kelley AM J Chem Phys; 2005 May; 122(18):184508. PubMed ID: 15918730 [TBL] [Abstract][Full Text] [Related]
18. NMR characterization of lignins isolated from fruit and vegetable insoluble dietary fiber. Bunzel M; Ralph J J Agric Food Chem; 2006 Oct; 54(21):8352-61. PubMed ID: 17032051 [TBL] [Abstract][Full Text] [Related]
19. Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. Agarwal UP; Reiner RR; Ralph SA J Agric Food Chem; 2013 Jan; 61(1):103-13. PubMed ID: 23241140 [TBL] [Abstract][Full Text] [Related]
20. Resonance Raman studies of beta-substituted porphyrin systems with unusual electronic absorption properties. Walsh PJ; Gordon KC; Wagner P; Officer DL Chemphyschem; 2006 Nov; 7(11):2358-65. PubMed ID: 17051577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]