These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16088976)

  • 21. Photoexcitation in Cu(I) and Re(I) complexes containing substituted dipyrido[3,2-a:2',3'-c]phenazine: a spectroscopic and density functional theoretical study.
    Walsh PJ; Gordon KC; Lundin NJ; Blackman AG
    J Phys Chem A; 2005 Jul; 109(26):5933-42. PubMed ID: 16833927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects.
    Guthmuller J; Champagne B
    J Phys Chem A; 2008 Apr; 112(14):3215-23. PubMed ID: 18327928
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregated enhanced Raman scattering in Fe(III)PPIX solutions: the effects of concentration and chloroquine on excitonic interactions.
    Webster GT; McNaughton D; Wood BR
    J Phys Chem B; 2009 May; 113(19):6910-6. PubMed ID: 19371036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal.
    Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y
    J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resonance hyper-Raman spectra of zinc phthalocyanine.
    Leng W; Myers Kelley A
    J Phys Chem A; 2008 Jul; 112(26):5925-9. PubMed ID: 18537230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. UV near-resonance Raman spectroscopic study of 1,1'-bi-2-naphthol solutions.
    Li ZY; Chen DM; He TJ; Liu FC
    J Phys Chem A; 2007 Jun; 111(22):4767-75. PubMed ID: 17500545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying residues in natural organic matter through spectral prediction and pattern matching of 2D NMR datasets.
    Simpson AJ; Lefebvre B; Moser A; Williams A; Larin N; Kvasha M; Kingery WL; Kelleher B
    Magn Reson Chem; 2004 Jan; 42(1):14-22. PubMed ID: 14745812
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base-induced delignification of Miscanthus x giganteus studied by three-dimensional confocal Raman imaging.
    Chu LQ; Masyuko R; Sweedler JV; Bohn PW
    Bioresour Technol; 2010 Jul; 101(13):4919-25. PubMed ID: 20022489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blind image analysis for the compositional and structural characterization of plant cell walls.
    Perera PN; Schmidt M; Schuck PJ; Adams PD
    Anal Chim Acta; 2011 Sep; 702(2):172-7. PubMed ID: 21839194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the origin of metal-sulfur vibrations in an oxo-molybdenum dithiolene complex: relevance to sulfite oxidase.
    Inscore FE; Knottenbelt SZ; Rubie ND; Joshi HK; Kirk ML; Enemark JH
    Inorg Chem; 2006 Feb; 45(3):967-76. PubMed ID: 16441102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carotenoid structures and environments in trimeric and oligomeric fucoxanthin chlorophyll a/c2 proteins from resonance Raman spectroscopy.
    Premvardhan L; Bordes L; Beer A; Büchel C; Robert B
    J Phys Chem B; 2009 Sep; 113(37):12565-74. PubMed ID: 19697894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences between lignin in unprocessed wood, milled wood, mutant wood, and extracted lignin detected by 13C solid-state NMR.
    Mao J; Holtman KM; Scott JT; Kadla JF; Schmidt-Rohr K
    J Agric Food Chem; 2006 Dec; 54(26):9677-86. PubMed ID: 17177487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial correlation of confocal Raman scattering and secondary ion mass spectrometric molecular images of lignocellulosic materials.
    Li Z; Chu LQ; Sweedler JV; Bohn PW
    Anal Chem; 2010 Apr; 82(7):2608-11. PubMed ID: 20205411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Studies of narcotics by micro Raman spectroscopy].
    Zhao J; Zhang P; Chen D; Zhang Y; Lu F; Xie H; Li H
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Dec; 19(6):837-40. PubMed ID: 15822312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.
    Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P
    J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-enhanced resonance Raman spectroscopic characterization of the protein native structure.
    Feng M; Tachikawa H
    J Am Chem Soc; 2008 Jun; 130(23):7443-8. PubMed ID: 18489096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid forensic analysis and identification of ''lilac'' architectural finishes using Raman spectroscopy.
    Bell SE; Fido LA; Speers SJ; Armstrong WJ
    Appl Spectrosc; 2005 Jan; 59(1):100-8. PubMed ID: 15720744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region.
    Bykov S; Lednev I; Ianoul A; Mikhonin A; Munro C; Asher SA
    Appl Spectrosc; 2005 Dec; 59(12):1541-52. PubMed ID: 16390595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Vibration studies of amphetamine and methamphetamine by micro Raman].
    Zhao J; Chen D; Zhang P; Lu F; Xie H; Li H
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Oct; 19(5):687-90. PubMed ID: 15822267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonresonance Raman study of the flavin cofactor and its interactions in the methylotrophic bacterium W3A1 electron-transfer flavoprotein.
    Yang KY; Swenson RP
    Biochemistry; 2007 Mar; 46(9):2298-305. PubMed ID: 17291007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.