These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16089355)

  • 21. Ezetimibe: rationale and role in the management of hypercholesterolemia.
    Yatskar L; Fisher EA; Schwartzbard A
    Clin Cardiol; 2006 Feb; 29(2):52-5. PubMed ID: 16506638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired absorption of cholesterol and bile acids in patients with an ileoanal anastomosis.
    Hakala K; Vuoristo M; Luukkonen P; Järvinen HJ; Miettinen TA
    Gut; 1997 Dec; 41(6):771-7. PubMed ID: 9462209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Drug-induced effects on cholesterol catabolism and bile acids.
    Gylling H; Miettinen TA
    Curr Opin Investig Drugs; 2006 Mar; 7(3):214-8. PubMed ID: 16555681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complementary Cholesterol-Lowering Response of a Phytosterol/α-Lipoic Acid Combination in Obese Zucker Rats.
    Rideout TC; Carrier B; Wen S; Raslawsky A; Browne RW; Harding SV
    J Diet Suppl; 2016; 13(3):283-99. PubMed ID: 25664679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ezetimibe decreases serum oxidized cholesterol without impairing bile acid synthesis in Japanese hypercholesterolemic patients.
    Hirayama S; Nakagawa S; Soda S; Kamimura Y; Nishioka E; Ueno T; Fukushima Y; Higuchi K; Inoue M; Seino U; Ohmura H; Yamato S; Miida T
    Atherosclerosis; 2013 Sep; 230(1):48-51. PubMed ID: 23958251
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New drugs for the treatment of hypercholesterolaemia.
    Iglesias P; Díez JJ
    Expert Opin Investig Drugs; 2003 Nov; 12(11):1777-89. PubMed ID: 14585054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodynamics of cholesterol and bile acids in the lithiasic hamster.
    Khallou J; Riottot M; Parquet M; Verneau C; Lutton C
    Br J Nutr; 1991 Nov; 66(3):479-92. PubMed ID: 1772872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cholesterol absorption, synthesis, and LDL metabolism in NIDDM.
    Gylling H; Miettinen TA
    Diabetes Care; 1997 Jan; 20(1):90-5. PubMed ID: 9028702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cholesterol-lowering effect of guar gum is not the result of a simple diversion of bile acids toward fecal excretion.
    Favier ML; Bost PE; Guittard C; Demigné C; Rémésy C
    Lipids; 1997 Sep; 32(9):953-9. PubMed ID: 9307936
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of feeding psyllium and cholestyramine in combination on low density lipoprotein metabolism and fecal bile acid excretion in hamsters with dietary-induced hypercholesterolemia.
    Turley SD; Daggy BP; Dietschy JM
    J Cardiovasc Pharmacol; 1996 Jan; 27(1):71-9. PubMed ID: 8656662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liver X receptors and the control of cholesterol homeostasis: potential therapeutic targets for the treatment of atherosclerosis.
    Millatt LJ; Bocher V; Fruchart JC; Staels B
    Biochim Biophys Acta; 2003 Mar; 1631(2):107-18. PubMed ID: 12633677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.).
    Kortner TM; Björkhem I; Krasnov A; Timmerhaus G; Krogdahl Å
    Br J Nutr; 2014 Jun; 111(12):2089-103. PubMed ID: 24635969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholesterol-lowering effects of dietary blue lupin (Lupinus angustifolius L.) in intact and ileorectal anastomosed pigs.
    Martins JM; Riottot M; de Abreu MC; Viegas-Crespo AM; Lança MJ; Almeida JA; Freire JB; Bento OP
    J Lipid Res; 2005 Jul; 46(7):1539-47. PubMed ID: 15834122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nuclear receptors and cholesterol metabolism in the intestine.
    Moschetta A
    Atheroscler Suppl; 2015 Feb; 17():9-11. PubMed ID: 25659870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Cholesterol and bile acid dynamics: comparative aspects].
    Lutton C
    Reprod Nutr Dev; 1990; 30(2):145-60. PubMed ID: 2190572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of hepatic cholesterol metabolism in the rat in vivo: effect of a synthetic fat-free diet on sterol synthesis and low-density lipoprotein transport.
    Bertolotti M; Spady DK; Dietschy JM
    Biochim Biophys Acta; 1995 Apr; 1255(3):293-300. PubMed ID: 7734446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of bile acid synthesis by cholesterol and cholestyramine feeding is unimpaired in mice deficient in apolipoprotein AI.
    Jolley CD; Dietschy JM; Turley SD
    Hepatology; 2000 Dec; 32(6):1309-16. PubMed ID: 11093738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholesterol metabolism in patients with chronic renal failure on hemodialysis.
    Igel-Korcagova A; Raab P; Brensing KA; Pöge U; Klehr HU; Igel M; von Bergmann K; Sudhop T
    J Nephrol; 2003; 16(6):850-4. PubMed ID: 14736012
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse.
    Wang DQ; Tazuma S; Cohen DE; Carey MC
    Am J Physiol Gastrointest Liver Physiol; 2003 Sep; 285(3):G494-502. PubMed ID: 12748061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EP4 emerges as a novel regulator of bile acid synthesis and its activation protects against hypercholesterolemia.
    Ying F; Cai Y; Wong HK; Chen XY; Huang IB; Vanhoutte PM; Xia Z; Xu A; Tang EHC
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):1029-1040. PubMed ID: 29890224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.