These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 16089628)
1. Onset of chaotic symbolic synchronization between population inversions in an array of weakly coupled Bose-Einstein condensates. Pando CL; Doedel EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056201. PubMed ID: 16089628 [TBL] [Abstract][Full Text] [Related]
2. 1/f noise in a thin stochastic layer described by the discrete nonlinear Schrödinger equation. Pando L CL; Doedel EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016213. PubMed ID: 17358241 [TBL] [Abstract][Full Text] [Related]
3. Defect-induced spatial coherence in the discrete nonlinear Schrödinger equation. Pando CL; Doedel EJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036603. PubMed ID: 15089426 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of three noncorotating vortices in Bose-Einstein condensates. Koukouloyannis V; Voyatzis G; Kevrekidis PG Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042905. PubMed ID: 24827311 [TBL] [Abstract][Full Text] [Related]
5. Wandering breathers and self-trapping in weakly coupled nonlinear chains: classical counterpart of macroscopic tunneling quantum dynamics. Kosevich YA; Manevitch LI; Savin AV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046603. PubMed ID: 18517746 [TBL] [Abstract][Full Text] [Related]
6. Phase-diffusion dynamics in weakly coupled bose-einstein condensates. Boukobza E; Chuchem M; Cohen D; Vardi A Phys Rev Lett; 2009 May; 102(18):180403. PubMed ID: 19518847 [TBL] [Abstract][Full Text] [Related]
7. Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates. Franzosi R; Penna V Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046227. PubMed ID: 12786480 [TBL] [Abstract][Full Text] [Related]
8. Stability of attractive Bose-Einstein condensates in a periodic potential. Bronski JC; Carr LD; Carretero-González R; Deconinck B; Kutz JN; Promislow K Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056615. PubMed ID: 11736124 [TBL] [Abstract][Full Text] [Related]
9. Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose-Einstein condensate. Carr LD; Kutz JN; Reinhardt WP Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066604. PubMed ID: 11415239 [TBL] [Abstract][Full Text] [Related]
10. Bose-Einstein condensates in standing waves: the cubic nonlinear Schrödinger equation with a periodic potential. Bronski JC; Carr LD; Deconinck B; Kutz JN Phys Rev Lett; 2001 Feb; 86(8):1402-5. PubMed ID: 11290153 [TBL] [Abstract][Full Text] [Related]
11. Stationary solutions for the 2+1 nonlinear Schrödinger equation modeling Bose-Einstein condensates in radial potentials. Mallory K; Van Gorder RA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023201. PubMed ID: 25215837 [TBL] [Abstract][Full Text] [Related]
12. A perturbative analysis of modulated amplitude waves in Bose-Einstein condensates. Porter MA; Cvitanović P Chaos; 2004 Sep; 14(3):739-55. PubMed ID: 15446984 [TBL] [Abstract][Full Text] [Related]
13. Stability of repulsive Bose-Einstein condensates in a periodic potential. Bronski JC; Carr LD; Deconinck B; Kutz JN; Promislow K Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036612. PubMed ID: 11308793 [TBL] [Abstract][Full Text] [Related]