These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 16089629)

  • 1. Quantum chaos algorithms and dissipative decoherence with quantum trajectories.
    Lee JW; Shepelyansky DL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056202. PubMed ID: 16089629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical versus quantum errors in quantum computation of dynamical systems.
    Rossini D; Benenti G; Casati G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056216. PubMed ID: 15600737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoherence induced by an interacting spin environment in the transition from integrability to chaos.
    Relaño A; Dukelsky J; Molina RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046223. PubMed ID: 17995098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum computation of a complex system: the kicked Harper model.
    Lévi B; Georgeot B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056218. PubMed ID: 15600739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoherence and quantum-classical dynamics in a dissipative bath.
    Rank JP; Kapral R
    J Chem Phys; 2010 Feb; 132(7):074106. PubMed ID: 20170214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative quantum chaos: transition from wave packet collapse to explosion.
    Carlo GG; Benenti G; Shepelyansky DL
    Phys Rev Lett; 2005 Oct; 95(16):164101. PubMed ID: 16241802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative production of a maximally entangled steady state of two quantum bits.
    Lin Y; Gaebler JP; Reiter F; Tan TR; Bowler R; Sørensen AS; Leibfried D; Wineland DJ
    Nature; 2013 Dec; 504(7480):415-8. PubMed ID: 24270806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics.
    Zhang Y; Yam C; Chen G
    J Chem Phys; 2015 Apr; 142(16):164101. PubMed ID: 25933746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realization of universal ion-trap quantum computation with decoherence-free qubits.
    Monz T; Kim K; Villar AS; Schindler P; Chwalla M; Riebe M; Roos CF; Häffner H; Hänsel W; Hennrich M; Blatt R
    Phys Rev Lett; 2009 Nov; 103(20):200503. PubMed ID: 20365970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient quantum computing of complex dynamics.
    Benenti G; Casati G; Montangero S; Shepelyansky DL
    Phys Rev Lett; 2001 Nov; 87(22):227901. PubMed ID: 11736427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bistability and chaos at low levels of quanta.
    Gevorgyan TV; Shahinyan AR; Chew LY; Kryuchkyan GY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022910. PubMed ID: 24032904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable quantum computation of unstable classical chaos.
    Georgeot B; Shepelyansky DL
    Phys Rev Lett; 2001 Jun; 86(23):5393-6. PubMed ID: 11384506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum computing of quantum chaos in the kicked rotator model.
    Lévi B; Georgeot B; Shepelyansky DL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046220. PubMed ID: 12786473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: Engineered tunable decay rate and controllable dissipative dynamics.
    Lü Z; Zheng H
    J Chem Phys; 2012 Mar; 136(12):121103. PubMed ID: 22462827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical fidelity of a solid-state quantum computation.
    Berman GP; Borgonovi F; Celardo G; Izrailev FM; Kamenev DI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056206. PubMed ID: 12513585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles of control for decoherence-free subsystems.
    Cappellaro P; Hodges JS; Havel TF; Cory DG
    J Chem Phys; 2006 Jul; 125(4):44514. PubMed ID: 16942163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exponential speedup with a single bit of quantum information: measuring the average fidelity decay.
    Poulin D; Blume-Kohout R; Laflamme R; Ollivier H
    Phys Rev Lett; 2004 Apr; 92(17):177906. PubMed ID: 15169196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General relation between quantum ergodicity and fidelity of quantum dynamics.
    Prosen T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036208. PubMed ID: 11909213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.