BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 16089698)

  • 1. Front propagation in hyperbolic fractional reaction-diffusion equations.
    Méndez V; Ortega-Cejas V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):057105. PubMed ID: 16089698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions.
    Cartea A; del-Castillo-Negrete D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041105. PubMed ID: 17994934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts.
    Fedotov S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011117. PubMed ID: 20365333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-time random-walk model for anomalous diffusion in expanding media.
    Le Vot F; Abad E; Yuste SB
    Phys Rev E; 2017 Sep; 96(3-1):032117. PubMed ID: 29347028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space-fractional advection-diffusion and reflective boundary condition.
    Krepysheva N; Di Pietro L; Néel MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021104. PubMed ID: 16605326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random death process for the regularization of subdiffusive fractional equations.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052139. PubMed ID: 23767519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling and crossover dynamics in the hyperbolic reaction-diffusion equations of initially separated components.
    Abi Mansour A; Al Ghoul M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026107. PubMed ID: 21929064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.
    Vlad MO; Ross J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061908. PubMed ID: 12513319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear subdiffusive fractional equations and the aggregation phenomenon.
    Fedotov S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032104. PubMed ID: 24125211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Markovian random processes and traveling fronts in a reaction-transport system with memory and long-range interactions.
    Fedotov S; Okuda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021113. PubMed ID: 12241156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Truncation effects in superdiffusive front propagation with Lévy flights.
    Del-Castillo-Negrete D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031120. PubMed ID: 19391915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Front propagation in reaction-dispersal models with finite jump speed.
    Méndez V; Campos D; Fedotov S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036121. PubMed ID: 15524601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymptotic front behavior in an A + B → 2A reaction under subdiffusion.
    Froemberg D; Schmidt-Martens HH; Sokolov IM; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031101. PubMed ID: 21517448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Front dynamics in a two-species competition model driven by Lévy flights.
    Hanert E
    J Theor Biol; 2012 May; 300():134-42. PubMed ID: 22285785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and dispersal with inertia: hyperbolic reaction-transport systems.
    Méndez V; Campos D; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042114. PubMed ID: 25375445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction-diffusion wave fronts on comblike structures.
    Campos D; Méndez V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051104. PubMed ID: 16089518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subordinated diffusion and continuous time random walk asymptotics.
    Dybiec B; Gudowska-Nowak E
    Chaos; 2010 Dec; 20(4):043129. PubMed ID: 21198099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Front propagation into an unstable state of reaction-transport systems.
    Fedotov S
    Phys Rev Lett; 2001 Jan; 86(5):926-9. PubMed ID: 11177975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation.
    Fulger D; Scalas E; Germano G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021122. PubMed ID: 18352002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion.
    Sokolov IM; Klafter J
    Chaos; 2005 Jun; 15(2):26103. PubMed ID: 16035905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.